intel

APPLICATION AP-66
NOTE

FABRIKSPARKEN 31-2600 GLOSTRUP-02- 45 66 45
DAMAGERVEJ 23 8260 VIBY J-06 11 00 11

January 1980

¢ :
e‘b o\\e o
«‘(\ °\$ o

RELATED INTEL® PUBLICATIONS

8291 GPIB Talker/Listener Data Sheet
8292 GPIB Controller Data Sheet
8293 GPIB Transceiver Data Sheet
AP-41 Introduction the UPI™41A

UPI™-41 User’s Manual

RELATED ZIATECH PUBLICATIONS

7T488 GPIB Logic Analyzer Operating Manual
ZT80/18 GPIB Controller Operating Manual
ZT17488/18 GPIB Controller Operating Manual

RELATED IEEE PUBLICATIONS
IEEE Std 488-1978 Digital Interface for Programmable Instrumentation

The material in the Application Note is for informational purposes only and is subject to change without
notice. Intel Corporation has made an effort to verify that the material in this document is correct. How-
ever, Intel Corporation does not assume any responsibility for errors that may appear in this document.

The following are trademarks of Intel Corporation and may be used only to describe Intel products: Intel,
Insite, Intellec, Library Manager, Megachassis, Micromap, Multibus, PROMPT, RMX/80, UPI, Intelevi-
sion, uScope, Promware, MCS, ICE, iSBC, BXP, iCS, and the combination of MCS, ICE, iSBC or iCS

with a numerical suffix.

Intel Corporation Assumes No Responsibility for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other Circuit Patent Licensesare Implied.

THE AUTHOR

Bert Forbes, Ziatech President, holds an SB from MIT (1966) and an
MSEE from Stanford (1967). During the ten years prior to forming Ziatech,
he worked at Hewlett-Packard where he was one of the architects of the
HP3000 multi-lingual, multi-programming computer, as well as a member
of the 3000’s European marketing team based in Geneva, Switzerland. This
innovative computer system is one of the major contributors to HP’s out-
standing sales record. Bert is a co-inventor named on several 3000 related
patents held by Hewlett-Packard.

Also at Hewlett-Packard, Bert was the architect and Project Manager for
the high-speed 16 bit CMOS/SOS microprocessor that is being used in con-
junction with an HPIB controller chip in dozens of Hewlett-Packard instru-
ments and computer peripherals. He has authored articles on logic design,
IEEE 488 and computer architecture and has taught several university
courses on miCroprocessors.

Bert has been specializing in the GPIB at Ziatech and has designed
numerous GPIB controllers and interfaces. He is a nationally known con-
sultant in this field.

Using the 8292
GPIB Controller

Contents

INTRODUCTION ... 1
GPIB/IEEE 488 OVERVIEW i 1
HARDWARE ASPECTS OF THE SYSTEM 6
8291 TALKER/LISTENER 6
8292 CONTROLLER ... o 6
8293 BUS TRANSCEIVERS i 7
ZT7488/18 GPIB CONTROLLER 10
8292 COMMAND DESCRIPTION ... 11
SOFTWARE DRIVER OUTLINE i 15
INITIALIZATION ..o i, 15
TALKER/LISTENER 16
Send Data ...t 16

Receive Data ...t 17
Transfer Data ... 19
CONTROLLER . ..o e e 19
5 5 19

Device Clearovvn it 20

Serial Poll ..o 20

Parallel Poll 21

Pass Controlo 23

Receive Controlt e 24

Service Requestt 25
SYSTEM CONTROLLER ... i, 26
Remote ... 26

Local ..o 26
Interface Clear/Abort i, 27
INTERRUPT AND DMA CONSIDERATIONS ... 27
APPLICATION EXAMPLE 28
CONCLUSION . e i 29
APPENDIX A 29
SOURCE LISTINGS ... i, 29
APPENDIX B ... 47
TEST CASES FOR THE SOFTWARE DRIVERS 47
APPENDIX C ..o, 51

INTRODUCTION

The Intel® 8292 is a preprogrammed UPI™41A that
implements the Controller function of the IEEE Std
488-1978 (GPIB, HP-IB, IEC Bus, etc.). In order to
function the 8292 must be used with the 8291
Talker/Listener and suitable interface and trans-
ceiver logic such as a pair of Intel 8293s. In this
configuration the system has the potential to be a
complete GPIB Controller when driven by the
appropriate software. It has the following capa-
bilities: System Controller, send IFC and Take
Charge, send REN, Respond to SRQ, send Interface
messages, Receive Control, Pass Control, Parallel
Poll and Take Control Synchronously.

This application note will explain the 8292 only in
the system context of an 8292, 8291, two 8293s and
the driver software. If the reader wishes to learn
more about the UPI-41A aspects of the 8292, Intel’s
Application Note AP-41 describes the hardware
features and programming characteristics of the
device. Additional information on the 8291 may be
obtained in the data sheet. The 8293 is detailed in its
data sheet. Both chips will be covered here in the
details that relate to the GPIB controller.

The next section of this application note presents an
overview of the GPIB in a tutorial, but compre-
hensive nature. The knowledgable reader may wish
to skip this section; however, certain basic semantic
concepts introduced there will be used throughout
this note.

Additional sections cover the view of the 8292 from
the CPU’s data bus, the interaction of the 3 chip
types (8291, 8292, 8293), the 8292’s software
protocol and the system level hardware/software
protocol. A brief description of interrupts and
DMA will be followed by an application example.
Appendix A contains the source code for the system
driver software.

GPIB/IEEE 488 OVERVIEW

DESIGN OBJECTIVES
What is the IEEE 488 (GPIB)?

The experience of designing systems for a variety of
applications in the early 1970’s caused Hewlett-
Packard to define a standard intercommunication
mechanism which would allow them to easily assemble
instrumentation systems of varying degrees of com-
plexity. In a typical situation each instrument de-
signer designed his/ her own interface from scratch.
Each one was inconsistent in terms of electrical
levels, pin-outs on a connector, and types of con-
nectors. Every time they built a system they had to
invent new cables and new documentation just to
specify the cabling and interconnection procedures.

Based on this experience, Hewlett-Packard began to
define a new interconnection scheme. They went
further than that, however, for they wanted to
specify the typical communication protocol for
systems of instruments. So in 1972, Hewlett-
Packard came out with the first version of the bus
which since has been modified and standardized by a
committee of several manufacturers, coordinated
through the 1EEE, to perfect what is now known as
the IEEE 488 Interface Bus (also known as the HP-
IB, the GPIB and the IEC bus). While this bus
specification may not be perfect, it is a good
compromise of the various desires and goals of
instrumentation and computer peripheral manu-
facturers to produce a common interconnection
mechanism. It fits most instrumentation systems in
use today and also fits very well the microcomputer
1/O bus requirements. The basic design objectives
for the GPIB were to:

1. Specify a system that is easy to use, but has all of
the terminology and the definitions related to
that system precisely spelled out so that every-
one uses the same language when discussing the
GPIB.

2. Define all of the mechanical, electrical, and func-
tional interface requirements of a system, yet not
define any of the device aspects (they are left up
to the instrument designer).

3. Permit a wide range of capabilities of instruments
and computer peripherals to use a system simul-
taneously and not degrade each other’s per-
formance.

4. Ailow different manufacturers’ equipment to be
connected together and work together on the
same bus.

5. Define a system that is good for limited dis-
tance interconnections.

6. Define a system with minimum restrictions on
performance of the devices.

7. Define a bus that allows asynchronous communi-
cation with a wide range of data rates.

8. Define a low cost system that does not require
extensive and elaborate interface logic for the
low cost instruments, yet provides higher capa-
bility for the higher cost instruments if desired.

9. Allow systems to exist that do not need a central
controller; that is, communication directly from
one instrument to another is possible.

Although the GPIB was originally designed for
instrumentation systems, it became obvious that
most of these systems would be controlled by a
calculator or computer. With this in mind several
modifications were made to the original proposal
before its final adoption as an international stan-
dard. Figure 1 lists the salient characteristics of the

GPIB as both an instrumentation bus and as a
computer /O bus.

Data Rate
1M bytes/s, max
250k bytes/s, typ
Multiple Devices
15 devices, max (electrical limit)
8 devices, typ (interrupt flexibility)
Bus Length
20 m, max
2 m/device, typ
Byte Oriented
8-bit commands
8-bit data
Block Multiplexed
Optimum strategy on GPIB due to
setup overhead for commands
Interrupt Driven
Serial poll (slower devices)
Parallel poll (faster devices)
Direct Memory Access
One DMA facility at controller
serves all devices on bus
Asynchronous
One talker
Multiple listeners
1/0 to I/O Transfers
Talker and listeners need not
include microcomputer/controller

3-wire handshake

Figure 1. Major Characteristics of
GPIB as Microcomputer I/0 Bus

The bus can be best understood by examining each
of these characteristics from the viewpoint of a
general microcomputer 1/O bus.

Data Rate — Most microcomputer systems utilize
peripherals of differing operational rates, such as
floppy discs at 31k or 62k bytes/s (single or double
density), tape cassettes at Sk to 10k bytes/s, and
cartridge tapes at 40k to 80k bytes/s. In general, the
only devices that need high speed 1/O are 0.5” (1.3-
cm) magnetic tapes and hard discs, operational at
30k to 781k bytes/s, respectively. Certainly, the
250k-bytes/s data rate that can be easily achieved by
the IEEE 488 bus is sufficient for microcomputers
and their peripherals, and is more than needed for
typical analog instruments that take only a few read-
ings per second. The 1M-byte/s maximum data rate
is not easily achieved on the GPIB and requires
special attention to considerations beyond the scope
of this note. Although not required, data buffering
in each device will improve the overall bus per-

formance and allow utilization of more of the bus
bandwidth.

Multiple Devices — Many microcomputer systems
used as computers (not as components) service from
three to seven peripherals. With the GPIB, up to 8
devices can be handled easily by | controller; with
some slowdown in interrupt handling, up to 15
devices can work together. The limit of 8 is imposed
by the number of unique parallel poll responses
available; the limit of 15 is set by the electrical drive
characteristics of the bus. Logically, the IEEE 488
Standard is capable of accommodating more device
addresses (31 primary, each potentially with 31
secondaries).

Bus Length — Physically, the majority of micro-
computer systems fit easily on a desk top or in a
standard 19” (48-cm) rack, eliminating the need for
extra long cables. The GPIB is designed typically to
have 2 m of length per device, which accommodates
most systems. A line printer might require greater
cable lengths, but this can be handled at the lower
speeds involved by using extra dummy termina-
tions.

Byte Oriented — The 8-bit byte is almost universal
in 1/O applications; even 16-bit and 32-bit com-
puters use byte transfers for most peripherals. The 8-
bit byte matches the ASCII code for characters and
is an integral submultiple of most computer word
sizes. The GPIB has an 8-bit wide data path that may
be used to transfer ASCII or binary data, as well as
the necessary status and control bytes.

Block Multiplexed — Many peripherals are block
oriented or are used in a block mode. Bytes are
transferred in a fixed or variable length group; then
there is a wait before another group is sent to that
device, ¢.g., one sector of a floppy disc, one lineona
printer or tape punch, etc. The GPIB is, by nature, a
block multiplexed bus due to the overhead involved
in addressing various devices to talk and listen. This
overhead is less bothersome if it only occurs once for
a large number of data bytes (once per block). This
mode of operation matches the needs of micro-
computers and most of their peripherals. Because of
block multiplexing, the bus works best with buffered
memory devices.

Interrupt Driven — Many types of interrupt systems
exist, ranging from complex, fast, vectored/ priority
networks to simple polling schemes. The main
tradeoff is usually cost versus speed of response. The
GPIB has two interrupt protocols to help span the
range of applications. The first is a single service
request (SRQ) line that may be asserted by all
interrupting devices. The controller then polls all
devices to find out which wants service. The polling
mechanism is well defined and can be easily

automated. For higher performance, the parallel
poll capability in the IEEE 488 allows up to eight
devices to be polled at once — each device is
assigned to one bit of the data bus. This mechanism
provides fast recognition of an interrupting device.
A drawback is the frequent need for the controller to
explicitly conduct a parallel poll, since there is no
equivalent of the SRQ line for this mode.

Direct Memory Access (DMA)— In many applica-
tions, no imediate processing of /O data on a byte-
by-byte basis is needed or wanted. In fact,
programmed transfers slow down the data transfer
rate unnecessarily in these cases, and higher speed
can be obtained using DMA. With the GPIB, one
DMA facility at the controller serves all devices.
There is no need to incorporate complex logic in
each device.

Asynchronous Transfers — An asynchronous busis
desirable so that each device can transfer at its own
rate. However, there is still a strong motivation to
buffer the data at each device when used in large
systems in order to speed up the aggregate data rate
on the bus by allowing each device to transfer at top
speed. The GPIB is asynchronous and uses a special

T\

AND dq
CONTROL
(e.g.)

DEVICE B <

ABLE TO
TALK AND
LISTEN

DEVICE A <
ABLE TO

TALK, LISTEN,

DATA BUS

(e.g. digital DATA BYTE
) TRANSFER

Lt CONTROL
DEVICE C <

ONLY ABLE
TO LISTEN

(e.g. signal
)

DEVICE D <

ONLY ABLE
TO TALK

GENERAL
1 INTERFACE
1 ™~ MANAGEMENT

(e.g. counter)

} DIO 1...(DATA
INPUT/OUTPUT)

DAV (DATA VALID)
NRFD (NOT READY FOR DATA)
NDAC (NOT DATA ACCEPTED)

IFC (INTERFACE CLEAR)
ATN (ATTENTION)

SRQ (SERVICE REQUEST)
REN (REMOTE ENABLE)
EOI (END-OR-IDENTIFY)

Figure 2. Interface Capabilities and Bus Structure

3-wire handshake that allows data transfers from
one talker to many listeners.

1/ O To 1I/0O Transfers — In practice, 1/O to [/O
transfers are seldom done due to the need for
processing data and changing formats or due to
mismatched data rates. However, the GPIB can
support this mode of operation where the micro-
computer is neither the talker nor one of the
listeners.

GPIB SIGNAL LINES
Data Bus

The lines DIOI through DIOS are used to transfer
addresses, control information and data. The
formats for addresses and control bytes are defined
by the IEEE 488 standard (see Appendix C). Data
formats are undefined and may be ASCII (with or
without parity) or binary. DIOI is the Least Sig-
nificant Bit (note that this will correspond to bit 0
on most computers).

Management Bus

ATN — Attention This signal is asserted by the
Controller to indicate that it is placing an address or
control byte on the Data Bus. ATN is de-asserted to
allow the assigned Talker to place status or data on
the Data Bus. The Controller regains control by re-
asserting ATN; this is normally done synchronously
with the handshake to avoid confusion between
control and data bytes.

EOI — End or Identify This signal has two uses as
its name implies. A talker may assert EOI simul-
taneously with the last byte of data to indicate end of
data. The Controller may assert EOI along with
ATN to initiate a Parallel Poll. Although many
devices do not use Parallel Poll, all devices should
use EOI to end transfers (many currently available
ones do not).

SRQ — Service Request This line is like an
interrupt: it may be asserted by any device to request
the Controller to take some action. The Controller
must determine which device is asserting SRQ by
conducting a Serial Poll at its earliest convenience.
The device deasserts SRQ when polled.

IFC — Interface Clear This signal is asserted only

by the System Controller in order to initialize all

device interfaces to a known state. After deasserting
IFC, the System Controller is the active controller of
the system.

REN — Remote Enable This signal is asserted
only by the System Controller. Its assertion does not
place devices into Remote Control mode; REN only
enables a device to go remote when addressed to
listen. When in Remote, a device should ignore its
front panel controls.

Transfer Bus

NRFD — Not Ready For Data This handshake
line is asserted by a listener to indicate it is not yet
ready for the next data or control byte. Note that the
Controller will not see NRFD deasserted (i.e., ready
for data) until all devices have deasserted NRFD.

NDAC — Not Data Accepted This handshake
line is asserted by a Listener to indicate it has not yet
accepted the data or control byte on the DIO lines.
Note that the Controller will not see NDAC
deasserted (i.e., data accepted) until all devices have
deasserted NDAC.

DAV — Data Valid This handshake line is
asserted by the Talker to indicate that a data or
control byte has been placed on the DIO lines and
has had the minimum specified settling time.

oo - I_--_f }-

NRFD':_ r_l f—l
L— l I

Figure 3. GPIB Handshake Sequence

GPIB INTERFACE FUNCTIONS

There are ten (10) interface functions specified by
the IEEE 488 standard. Not all devices will have all
functions and some may only have partial subsets.
The ten functions are summarized below with the
relevant section number from the IEEE document
given at the beginning of each paragraph. For
further information please see the IEEE standard.

1. SH — Source Handshake (section 2.3) This
function provides a device with the ability to
properly transfer data from a Talker to one or
more Listeners using the three handshake lines.

2. AH — Acceptor Handshake (section 2.4) This
function provides a device with the ability to
properly receive data from the Talker using the
three handshake lines. The AH function may
also delay the beginning (NRFD) or end
(NDAC) of any transfer.

3. T — Talker (section 2.5) This function allows a
device to send status and data bytes when ad-
dressed to talk. An address consists of one
(Primary) or two (Primary and Secondary)

bytes. The latter is called an extended Talker.

4. L — Listener (section 2.6) This function allows
adevice to receive data when addressed to listen.
There can be extended Listeners (analogous to
extended Talkers above).

5. SR — Service Request (section 2.7) This func-
tion allows a device to request service (inter-
rupt) the Controller. The SRQ line may be
asserted asynchronously.

6. RL — Remote Local (section 2.8) This function
allows a device to be operated in two modes:
Remote via the GPIB or Local via the manual
front panel controls.

7. PP — Parallel Poll (section 2.9) This function
allows a device to present one bit of status to the
Controller-in-charge. The device need not be
addressed to talk and no handshake is required.

8. DC — Device Clear (section 2.10) This function
allows a device to be cleared (initialized) by the
Controller. Note that there is a difference
between DC (device clear) and the IFC line
(interface clear).

9. DT — Device Trigger (section 2.11) This func-
tion allows a device to have its basic operation
started either individually or as part of a group.
This capability is often used to synchronize
several instruments.

10. C — Controller (section 2.12) This function
allows a device to send addresses, as well as
universal and addressed commands to other
devices. There may be more than one controller
on a system, but only one may be the controller-
in-charge at any one time.

At power-on time the controller that is handwired to
be the System Controller becomes the active
controller-in-charge. The System Controller has
several unique capabilities including the ability to
send Interface Clear (IFC — clears all device
interfaces and returns control to the System
Controller) and to send Remote Enable (REN —
allows devices to respond to bus data once they are
addressed to listen). The System Controller may
optionally Pass Control to another controller, if the
system software has the capability to do so.

GPIB CONNECTOR

The GPIB connector is a standard 24-pin industrial
connector such as Cinch or Amphenol series 57
Micro-Ribbon. The IEEE standard specifies this
connector, as well as the signal connections and the
mounting hardware.

The cable has 16 signal lines and 8 ground lines. The
maximum length is 20 meters with no more than two
meters per device.

SHIELD
ATN
SRQ
IFC
NDAC
NRFD
DAV
EOI
DI04
DI03
DI02
DIio1

Figure 4. GPIB Connector

GPIB SIGNAL LEVELS

The GPIB signals are all TTL compatible, low true
signals. A signal is asserted (true) when its electrical
voltage is less than 0.5 volts and is deasserted (false)
when it is greater than 2.4 volts. Be careful not to
become confused with the two handshake signals,
NRFD and NDAC which are also low true (i.e.
> (.5 volts implies the device is Not Ready For
Data).

The Intel 8293 GPIB transceiver chips ensure that all
relevant bus driver/receiver specifications are met.
Detailed bus electrical specifications may be found
in Section 3 of the IEEE Std 488-1978. The Standard
is the ultimate reference for all GPIB questions.

GPIB MESSAGE PROTOCOLS

The GPIB is a very flexible communications
medium and as such has many possible variations of
protocols. To bring some order to the situation, this
section will discuss a protocol similar to the one used
by Ziatech’s ZT80 GPIB controller for Intel’s
MULTIBUS™ computers. The ZT80 is a complete
high-level interface processor that executes a set of
high level instructions that map directly into GPIB
actions. The sequences of commands, addresses and
data for these instructions provide a good example
of how to use the GPIB (additional information is
available in the ZT80 Instruction Manual). The
‘null’ at the end of each instruction is for cosmetic
use to remove previous information from the DIO
lines.

DATA — Transfer a block of data from device A to

devices B, C...

1. Device A Primary (Talk) Address
Device A Secondary Address (if any)

2. Universal Unlisten

3. Device B Primary (Listen) Address
Device B Secondary Address (if any)
Device C Primary (Listen) Address
etc.

4. First Data Byte
Second Data Byte

Last Data Byte (EOI)
5. Null

TRIGR — Trigger devices A, B,...to take action
1. Universal Unlisten
2. Device A Primary (Listen) Address
Device A Secondary Address (if any)
Device B Primary (Listen) Address
Device B Secondary Address (if any)
etc.
3. Group Execute Trigger
4. Null

PSCTL — Pass control to device A

1. Device A Primary (Talk) Address
Device A Secondary Address (if any)

2. Take Control

3. Null

CLEAR — Clear all devices
1. Device Clear
2. Null

REMAL — Remote Enable
1. Assert REN continuously

GOREM — Put devices A, B,...into Remote
1. Assert REN continuously
2. Device A Primary (Listen) Address
Device A Secondary Address (if any)
Device B Primary (Listen) Address
Device B Secondary Address (if any)
etc.
3. Null

GOLOC — Put devices A, B,...into Local

1. Device A Primary (Listen) Address
Device A Secondary Address (if any)
Device B Primary (Listen) Address
Device B Secondary Address (if any)
etc.

2. Go To Local

3. Null

LOCAL — Reset all devices to Local
1. Stop asserting REN

LILKAL — Prevent all devices from returning to
Local

1. Local Lock Out

2. Null

SPOLL — Conduct a serial poll of devices A, B, ...
1. Serial Poll Enable
2. Universal Unlisten
3. ZT 80 Primary (Listen) Address
ZT 80 Secondary Address
4. Device Primary (Talk) Address
Device Secondary Address (if any)
Status byte from device
Go to Step 4 until all devices on list have been polled
Serial Poll Disable
. Null

PPUAL — Unconfigure and disable Parallel Poll
response from all devices

1. Parallel Poll Unconfigure

2. Null

ENAPP — Enable Parallel Poll response in devices

A, B,...

1. Universal Unlisten

2. Device Primary (Listen) Address
Device Secondary Address (if any)

3. Parallel Poll Configure

4. Parallel Poll Enable

5. Go to Step 2 until all devices on list have been
configured.

6. Null

DISPP — Disable Parallel Poll response from de-
vices A, B,...
1. Universal Unlisten
2. Device A Primary (Listen) Address
Device A Secondary Address (if any)
Device B Primary (Listen) Address
Device B Secondary Address (if any)
etc.
3. Disable Parallel Poll
4. Null

This Ap Note will detail how to implement a useful
subset of these controller instructions.

% N

HARDWARE ASPECTS OF THE SYSTEM

8291 GPIB TALKER/LISTENER

The 8291 is a custom designed chip that implements
many of the non-controller GPIB functions. It pro-
vides hooks so the user’s software can implement
additional features to complete the set. This chip is
discussed in detail in its data sheet. The major fea-
tures are summarized here:

— Designed to interface microprocessors to the GPIB

—Complete Source and Acceptor Handshake

—Complete Talker and Listener Functions with ex-
tended addressing

—Service Request, Parallel Poll, Device Clear, De-
vice Trigger, Remote/Local functions

—Programmable data transfer rate

—Maskable interrupts

—On-chip primary and secondary address recogni-
tion

—1-8 MHz clock range

— 16 registers (8 read, 8 write) for CPU interface

—DMA handshake provision

—Trigger output pin

—On-chip EOS (End of Sequence) recognition

The pinouts and block diagram are shown in Fig. 5.
One of eight read registers is for data transfer to the
CPU; the other seven allow the microprocessor to
monitor the GPIB states and various bus and device
conditions. One of the eight write registers is for data
transfer from the CPU; the other seven control
various features of the 8291.

The 8291 interface functions will be software
configured in this application example to the
following subsets for use with the 8292 as a
controller that does not pass control. The 8291 is
used only to provide the handshake logic and to send
and receive data bytes. It is not acting as a normal
device in this mode, as it never sees ATN asserted.

SHI Source Handshake

AHI Acceptor Handshake

T3 Basic Talk-only

L1 _Basic Listen-only

SRO No Service Requests
RLO No Remote/ Local

PPO No Parallel Poll response
DCO No Device Clear

DTO No Device Trigger

If control is passed to another controller, the 8291
must be reconfigured to act as a talker/listener with
the following subsets:

SHI Source Handshake
AHI Acceptor Handshake

TS Basic Talker and Serial Poll
L3 Basic Listener

SR1 Service Requests

RLI Remote/Local with Lockout

PP2 Preconfigured Parallel Poll
DCl1 Device Clear

DT1 Device Trigger

Co Not a Controller

Most applications do not pass control and the con-
troller is always the system controller (see 8292
commands below).

8292 GPIB CONTROLLER

The 8292 is a preprogrammed Intel® 8041A that
provides the additional functions necessary to

PIN CONFIGURATION

BLOCK DIAGRAM

T/RIOQN \/ ao[dVcee —~ l 8291 N
T/R2[]2 39[JEOI _
cLock 3 38JJNDAC | < GPIB DATA >
RESET[J4 37[JNRFD ’ |
TRIGS 36[JDAV | INTERFACE
DREQ[]6 35[]DIO8 “ FUNCTIONS I
— 8 READ /‘\.: =
DACK 7 34[ADI07 3 REGISTERS £ SH K GPIB CONTROL > | TO NON-INVERTING
s [33f1 0106 < K g AH | BUS TRANSCEIVERS
rRO[]9 32[JDI05 g 2 IE |
wWR[J0 8291 31[1DIoa §<:> 2 SR
INTO 11 30|noio3 2 I AL
. :]_ o z pp T/R CONTROL
oogjre 2 pow 2 1 B I—
—_— <
o113 2810101 5 z DT -
p20]14 271SRa « 8 WRITE > |
o L1 recisTeRs g
p3[15 26 [JATN H | |
pa]16 250 REN I
ps[]17 2aQ1FC |
MESSAGE
RS2
pef18 23RS | DECODER |
o719 22[Rs1 |
L |
vss20 21[ARso

Figure 5. 8291 Pin Configuration and Block Diagram

implement a GPIB controller when used with an
8291 Talker/Listener. The 8041A is documented in
both a user’s manual and in AP-41. The following
description will serve only as an outline to guide the
later discussion.

The 8292 acts as an intelligent slave processor to the
main system CPU. It contains a processor, memory,
I/0 and is programmed to perform a variety of tasks
associated with GPIB controller operation. The on-
chip RAM is used to store information about the
state of the Controller function, as well as a variety
of local variables, the stack and certain user status
information. The timer/counter may be optionally
used for several time-out functions or for counting
data bytes transferred. The 1/O ports provide the
GPIB control signals, as well as the ancillary lines
necessary to make the 8291, 2, 3 work together.

The 8292 is closely coupled to the main CPU
through three on-chip registers that may be
independently accessed by both the master and the
8292 (UPI-41A). Figure 6 shows this Register
Interface. Also refer to Figure 12.

The status register is used to pass Interrupt Status
information to the master CPU (A0 = 1 on a read).

The DBBOUT register is used to pass one of five
other status words to the master based on the last
command written into DBBIN. DBBOUT is accessed
when A0 = 0 on a Read. The five status words are
Error Flag, Controller Status, GPIB Status, Event
Counter Status or Time Out Status.

DBBIN receives either commands (A0 = 1 on a
Write) or command related data (AO =0 on a write)
from the master. These command related data are

Interrupt Mask, Error Mask, Event Counter or
Time Out.

STATUS
DBBIN UPI-41A
DBBOUT

CcPU

CONTROL

|

REGISTER

READ DBBOUT

READ STATUS

WRITE DBBIN (DATA)
WRITE DBBIN (COMMAND)
NO ACTION

xssoo|3
3
XOO 4 3

Figure 6. UPI-41A Registers

8293 GPIB TRANSCEIVERS

The 8293 is a multi-use HMOS chip that implements
the IEEE 488 bus transceivers and contains the
additional logic required to make the 8291 and 8292
work together. The two option strapping pins are
used to internally configure the chip to perform the
specialized gating required for use with 8291 as a
device or with 8291/92 as a controller.

In this application example the two configurations
used are shown in Fig. 7a and 7b. The drivers are set
to open collector or three state mode as required and
the special logic is enabled as required in the two
modes.

MODE 2

— oPTa
+5
_| YT op8
NDAC SR T/C Npac*
NRFD SR T/C NRFD*
T/R1 —Do——l—'_r%
FC SR T/C IFC*
e H—r‘_T
REN SR TIC REN*
Q
sRa S/R_T/C sRa*
ATNI
*
ATN % I lsr 1/ ATN
012 Ism e eor*
ATNO
ot SR _T/C
T/R2
TFeT
CLTH
ic
Figure 7a. 8293 Mode 2
MODE 3 *5
[PT,
ATNO oFTA
iFeL
oPTB
Av SR T/C DAvV*
T/R1
DIos S/R_T/c] piov*
DIO, Ism T/CI DI02%
IO, SR T/C DI03*
DIO, Ism e Dplog*
DIO, Ism T/CI Dlos *
DIOg SR_T/C Dios*
o1%, SR T/C Dio7*
DI, SR T/C] Diog*
£oi
ATN

Figure 7b. 8293 Mode 3

8291/2/3 CHIP SET

Figure 8 shows the four chips interconnected with
the special logic explicitly shown.

The 8291 acts only as the mechanism to put
commands and addresses on the bus while the 8292
is asserting ATN. The 8291 is tricked into believing
that the ATN line is not asserted by the ATN2
output of the ATN transceiver and is placed in Talk-
only mode by the CPU. The 8291 then acts as though
it is sending data, when in reality it is sending
addresses and/or commands. When the 8292
deasserts ATN, the CPU software must place the
8291 in Talk-only, Listen-only or Idle based on the
implicit knowledge of how the controller is going to
participate in the data transfer. In other words, the
8291 does not respond directly to addresses or
commands that it sends on the bus on behalf of the
Controller. The user software, through the use of
Listen-only or Talk-only, makes the 8291 behave as
though it were addressed.

Although it is not a common occurrence, the GPIB
specification allows the Controller to set up a data
transfer between two devices and not directly
participate in the exchange. The controller must
know when to go active again and regain control.
The chip set accomplishes this through use of the
“Continuous Acceptor Handshake cycling mode”
and the ability to detect EOl or EOS at the end of the
transfer. See XFER in the Software Driver Outline
below.

If the 8292 is not the System Controller as
determined by the signal on its SYC pin, then it must
be able to respond to an IFC within 100 usec. This is
accomplished by the cross-coupled NORs in Fig. 7a
which deassert the 8293’s internal version of CIC
(Not Controller-in-Charge). This condition is latched
until the 8292’s firmware has received the IFCL
(interface clear received latch) signal by testing the
IFCL input. The firmware then sets its signals to re-
flect the inactive condition and clears the 8§293’s latch.

In order for the 8292 to conduct a Parallel Poll the
8291 must be able to capture the PP response on the
DIO lines. The only way to do this is to fool the 8291
by putting it into Listen-only mode and generatinga
DAYV condition. However, the bus spec does not
allow a DAV during Parallel Poll, so the back-to-
back 3-state buffers (see Fig. 7b) in the 8293 isolate
the bus and allow the 8292 to generate a local DAV
for this purpose. Note that the 8291 cannot assert a
Parallel Poll response. When the 8292 is not the
controller-in-charge the 8291 may respond to PPs
and the 8293 guarantees that the DIO drivers are in
“open collector” mode through the OR gate (Fig.
7b).

MODE 3 +5
ATNO OPTA
IFCL OPTB
DAV DAV %
DAV
T/R1 T/R1
DIOT-8 DIO1 1 %
S/R T/C DIO1
REN Dio2 — "
S/R T/C D|02
EOI DIO3 1 *
S/R T/C DI03
R [][eL: —
8291 T/Rz S/R T/C Dloa*
1FC DIO5 1 *
S/R T/C D|05
NRFD DIO6 — *
S/R T/C| Dlos
NDAC DIO7 —
S/R T/C| DIO7*
DIO8 —
S/R T/C| Dloa*
EOI
ATN
A T >
_ ATN
SRQ
MODE 2
] OPTA
| 13
- T
NDAC % OoPTB
DAV % NDAC
NRFD —
T/ﬁ1 S/R T/C NRFD*
1FC IFC 1
pevs P " IFC*
R REN —
EN om TIC REN ¥
SRQ SRQ U %
- B I b
8292 | & ATNI
e |
__ ATN % s
EOI2 EOI2 *
ATNO sr 1c[— —] EOI
ATNO EOi] —
SounT e
IFCL IFCL
LCLTH CLTH]
CIC CiC

Figure 8. Talker/Listener/Controller

7717488/18 GPIB CONTROLLER

Ziatech’s GPIB Controller, the ZT7488/18 will be
used as the controller hardware in this Application
Note. The controller consists of an 8291, 8292, an 8
bit input port and TTL logic equivalent to that
shown in Figure 8. Figure 9 shows the card’s block
diagram. The ZT7488/ 18 plugs into the STD bus, a
56 pin 8 bit microprocessor oriented bus. An 8085
CPU card is also available on the STD bus and will
be used to execute the driver software.

The 8291 uses 1/O Ports 60H to 67H and the 8292
uses 1/ O Ports 68 H and 69H. The five interrupt lines
are connected to a three-state buffer at 1/O Port

6FH to facilitate polling operation. This is required
for the TCI, as it cannot be read internally in the
8292. The other three 8292 lines (SPI, IBF, OBF)
and the 8291’s INT line are also connected to
minimize the number of /O reads necessary to poll
the devices.

NDAC isconnected to COUNT on the 8292 to allow
byte counting on data transfers. The example driver
software will not use this feature, as the software is
simpler and faster if an internal 8085 register is used
for counting in software.

|
<
52
DMA
DATA BUS 3-STATE 8291
D0-D7 BUFFERS CONNECTOR
INTERFACE
,—j LOGIC
ADDRESS |
AD-A2
cLock:
3-STATE
* 292
RD BUFFERS 829
wT*
SYS RESET*
7" GPIB
9 CONNECTOR
10 EXP*
10RQ" LO |
CARD PORT INTERRUPT TRANS-
SELECT JO——O| SELECT PORT CEIVERS
DECODER DECODER
ADDRESS b /o —
A5-A7 r
ADDRESS
A3-A4

*INDICATES ACTIVE LOW LOGIC

Figure 9. ZT7488/18 GPIB Controller

READ REGISTERS PORT # WRITE REGISTERS

’ DI7 l Dl6 | DI5 ‘ Dla l DI3 | DI2 [DI lDIOT B69H

DATA IN

[cer [aet [oer[eno [oec] ern] B0 [B1 |

INTERRUPT STATUS 1

’7|NT\| SPASI LLOT REMT SPASC!LLOCI REMC‘ ADSC‘

INTERRUPT STATUS 2

o Toalse [s [o [0 [w []

SERIAL POLL STATUS

ton lon l EOI \ LPASI TPAS’LA] TA I MJMN‘

ADDRESS STATUS

' CPT7I CPTGl CPTS] CPTA‘ CPT3 |CPTZ I CPTI‘ CPTO—I

COMMAND PASS THROUGH

‘ X l DTO I DLO ‘ AD5—0| AD4~DIAD3~OI ADz-oI AD1-0
ADDRESS 0

’ X ’ DT1 l oL1 I Aosﬂ ADA-I’AD3—1| ADZ—11AD1—1|
ADDRESS 1

63H

65H

67H

1
IDO7 I DO6 I DO5 I DO4 I DO3 ‘ D02 l DO1 ‘ DOO ‘

DATA OUT

[orr [aer [or [oo [occ [enn [s0 [m |

INTERRUPT MASK 1

‘ DMAO‘DMAII SPASC{LLOC‘ REMC] ADSC‘

ENE
INTERRUPT MASK 2

= = = = [= [o [[s]

SERIAL POLL MODE

o T o o [0 [

ADDRESS MODE

’ ADM]l ADMOI

I
’ CNTZI CNT‘I' CNTOI COM4‘ COM3| COMZ“ COMJ COMO}

AUX MODE

[ns [or [or [aos | aos [aoa | a0 [01]

ADDRESS 0/1

l EC7 IECG ‘ EC5 IEC4] EC3 ‘EC? ’ EC1 ‘ECO |

EOS

Figure 10. 8291 Registers

10

Ay
8 o MEMR
Ay OR
RD B, 55 0, IoR
7]
%33 o, MEMW
3 —_
A o, TOW
WR B,
S OE
1o/Me—]
RESET
INTA
INT
D7-D0
9y b 111 e !
] RST RD WR 0010 RST RD WR RD WR
m DE>3 IBFI L\
3 D7-DO INT o553 OBFI 2142 [
8259-5 SPI —V cs
—dcs ag TCI
D7-DO
DRQO DREQ SRQ - —(SRQ
Y DACKop——lpack REN Jo- o REN
IFC d IFc
8257-5 NRFD 8292
8291 NDAC o COUNT
HOLD HRQ] ATN p- —qf CIC —N| 2142 V-
HLDA +HLDA R s2 EOI > — g EOI2 —— -
TRDY 5 R DAV of DAV cs
- ¢ RS1 T/R1 | d ATNI
CLK ok 2 RSO D101 d atno
(= DIOS (4—— ——d IFCL
z @ — CLK TRo — lcutH A0
< 0 < cs —{sYc cs
g Y i’
l [_‘
2 L4
Iy - ’oJ)J) oé)é)oné:o&oé)oo
O 0O o 0. 0,0,0 AH4ZZFIOMmME>B>POZTO®N
— Jd b (2]
R 5wl 0123 8293 3392608293 3235053
8212 8205 50 <3 T
B "N rN® MODE 3 8293 MOD
MD DS1 < WWw E2
v v i ﬁ*lb
2
2| 853 »o e
~|fo| | o HIm <
=[R2 IR <
<<l << 3 3 3 |ao o233 | aPIB 2 EE %
V
A15 - A0 TITT L3 + T

Figure 11. DMA/Interrupt GPIB Controller Block Diagram

The application example will not use DMA or
interrupts; however, the Figure 11 block diagram
includes these features for completeness.

The 8257-5 DMA chip can be used to transfer data
between the RAM and the 8291 Talker/ Listener.
This mode allows a faster data rate on the GPIB
and typically will depend on the 8291’s EOS or EOI
detection to terminate the transfer. The 8259-5
interrupt controller is used to vector the five possible
interrupts for rapid software handling of the various
conditions.

8292 COMMAND DESCRIPTION

This section discusses each command in detail and
relates them to a particular GPIB activity. Recall
that although the 8041 A has only two read registers
and one write register, through the magic of on-chip
firmware the 8292 appears to have six read registers
and five write registers. These are listed in Figure 12.
Please see the 8292 data sheet for detailed definitions

11

of each register. Note the two letter mnemonics to be
used in later discussions. The CPU must not write
into the 8292 while IBF (Input Buffer Full) is a one,
as information will be lost.

DIRECT COMMANDS

Both the Interrupt Mask (IM) and the Error Mask
(EM) register may be directly written with the LSB
of the address bus (A0) a “0”. The firmware uses the
MSB of the data written to differentiate between IM
and EM.

Load Interrupt Mask

This command loads the Interrupt Mask with
D7-D0. Note that D7 must be a “1” and that
interrupts are enabled by a corresponding “1” bit in
this register. [FC interrupt cannot be masked off;
however, when the 8292 is the System Controller,
sending an ABORT command will not cause an IFC
interrupt.

READ FROM 8292 PORT #
INTERRUPT STATUS
SYC | ERR | SRQ | EV X IFCR | IBF | OBF 69H
D7 Do
ERROR FLAG"
X X |USER| X X |TOUT3| TOUT2|TOUT1 68H
CONTROLLER STATUS*
CSBS| CA X X | SYCS| IFC | REN | SRQ 68H
GPIB (BUS) STATUS*
REN | DAV | EOI X SYC | IFC | ANTI | SRQ 68H
EVENT COUNTER STATUS*
D D D D D D D D 68H
TIME OUT STATUS®
D D D D D D D D 68H
Figure 12.

WRITE TO 8292
COMMAND FIELD

1 1 1 OP C C C C
INTERRUPT MASK

1 SPI TCI SYC | OBFI BFI 0 SRQ

D7 Do

ERROR MASK

0 0 USER 0 0 TOUT4[TOUT3| TOUT4
EVENT COUNTER*

D D | D | D D D D D

TIME OUT*
D D D D D D D D

*Note: These registers are accessed by a special utility command.

8292 Registers

Load Error Mask

This command loads the Error Mask with D7-D0.
Note that D7 must be a zero and that interrupts are
enabled by a corresponding “1” bit in this register.

UTILITY COMMANDS

These commands are used to read or write the 8292
registers that are not directly accessible. All utility
commands are written with AO=1,D7=D6=D5=1,
D4 =0. D3- D0 specify the particular command. For
writing into registers the general sequence is:

1. wait for IBF = 0 in Interrupt Status Register

2. write the appropriate command to the 8292,

3. write the desired register value to the 8292 with
A0 = | with no other writes intervening,

4. wait for indication of completion from 8292
(IBF = 0).

For reading a register the general sequence is:

1. wait for IBF = 0 in Interrupt Status Register

2. write the appropriate command to the 8292

3. wait for a TCI (Task Complete Interrupt)

4. Read the value of the accessed register from the
8292 with A0 = 0.

WEVC — Write to Event Counter
(Command = 0E2H)

The byte written following this command will be
loaded into the event counter register and event
counter status for byte counting. The internal

12

counter is incremented on a high to low transition of
the COUNT (T1) input. In this application example
NDAC is connected to count. The counteris an 8 bit
register and therefore can count up to 256 bytes
(writing 0 to the EC implies a count of 256). If longer
blocks are desired, the main CPU must handle the
interrupts every 256 counts and carefully observe the
timing constraints.

Because the counter has a frequency range from 0 to
133 kHz when using a 6 MHz crystal, this feature
may not be usable with all devices on the GPIB. The
8291 can easily transfer data at rates up to 250 kHz
and even faster with some tuning of the system.
There is also a 500 ns minimum high time
requirement for COUNT which can potentially be
violated by the 8291 in continuous acceptor
handshake mode (i.e., TNDDVI + TDVND2-C =
350 + 350 = 700 max). When cable delays are taken
into consideration, this problem will probably never.
occur.

When the 8292 has completed the command, IBF
will become a “0” and will cause an interrupt if
masked on.

WTOUT — Write to Time Out Register
(Command = 0EITH)

The byte written following this command will be
used to determine the number of increments used for
the time out functions. Because the register is 8 bits,
the maximum time out is 256 time increments. This

is probably enough for most instruments on the
GPIB but is not enough for a manually stepped
operation using a GPIB logic analyzer like Ziatech’s
ZT488. Also, the 488 Standard does not set a lower
limit on how long a device may take to do each
action. Therefore, any use of a time out must be able
to be overridden (this is a good general design rule
for service and debugging considerations).

The time out function is implemented in the 8292’s
firmware and will not be an accurate time. The
counter counts backwards to zero from its initial
value. The function may be enabled/disabled by a
bit in the Error mask register. When the command is
complete IBF will be set to a “0” and will cause an
interrupt if masked on.

REVC — Read Event Counter Status
(Command = OE3H)

This command transfers the content of the Event
Counter to the DBBOUT register. The firmware
then sets TCI = 1 and will cause an interrupt if
masked on. The CPU may then read the value from
the 8292 with A0 = 0.

RINM — Read Interrupt Mask Register
(Command = 0ESH)

This command transfers the content of the Interrupt
Mask register to the DBBOUT register. The
firmware sets TCI = 1 and will cause an interrupt if
masked on. The CPU may then read the value.

RERM — Read Error Mask Register
(Command = OEAH)

This command transfers the content of the Error
Mask register to the DBBOUT register. The
firmware sets TCI = 1 and will cause an interrupt if
masked on. The CPU may then read the value.

RCST — Read Controller Status Register
(Command = 0E6H)

This command transfers the content of the Con-
troller Status register to the DBBOUT register. The
firmware sets TCI = 1 and will cause an interrupt if
masked on. The CPU may then read the value.

RTOUT — Read Time Out Status Register
(Command = OE9H)

This command transfers the content of the Time Out
Status register to the DBBOUT register. The
firmware sets TCI = | and will cause an interrupt if
masked on. The CPU may then read the value.

If this register is read while a time-out function is in
process, the value will be the time remaining before
time-out occurs. If it is read after a time-out, it will
be zero. If it is read when no time-out is in process, it
will be the last value reached when the previous
timing occurred.

13

RBST — Read Bus Status Register
(Command = 0E7H)

This command causes the firmware to read the
GPIB management lines, DAV and the SYC pin and
place a copy in DBBOUT. TCl is set to “1” and will
cause an interrupt if masked on. The CPU may read
the value.

RERF — Read Error Flag Register
(Command = 0E4H)

This command transfers the content of the Error
Flag register to the DBBOUT register. The firmware
sets TCI = 1 and will cause an interrupt if masked on.
The CPU may then read the value.

This register is also placed in DBBOUT byan IACK
command if ERR remains set. TCI is set to “1” in
this case also.

IACK — Interrupt Acknowledge
(Command = Al A2 A3 A41A511)

This command is used to acknowledge any combina-
tions of the five SPI interrupts (Al-AS5): SYC,
ERR, SRQ, EV, and IFCR. Each bit A1-AS is an
individual acnowledgement to the corresponding bit
in the Interrupt Status Register. The command
clears SPI but it will be set again if all of the pending
interrupts were not acknowledged.

If A2 (ERR)is “17, the Error Flag register is placed
in DBBOUT and TCl is set. The CPU may then read
the Error Flag without issuing an RERF command.

OPERATION COMMANDS

The following diagram (Fig. 13) is an attempt to
show the interrelationships among the various 8292
Operation Commands. It is not meant to replace the
complete controller state diagram in the 1EEE
Standard.

RST — Reset (Command = OF2H)

This command has the same effect as an external
reset applied to the chip’s pin #4. The 8292’s actions
are:

1. All outputs go to their electrical high state. This
means that SPI, TCI, OBFI, IBFI, CLTH will be
TRUE and all other GPIB signals will be FALSE.

2. The 8292’s firmware will cause the above men-
tioned five signals to go FALSE after approxi-
mately 17.5 usec. (at 6 MHz).

3. These registers will be cleared: Interrupt Status,
Interrupt Mask, Error Mask, Time Out, Event
Counter, Error Flag.

4. If the 8292 is the System Controller (SYC is
TRUE), then IFC will be sent TRUE forapproxi-
mately 100 usec and the Controller function will
end up in charge of the bus. If the 8292 is not the

_________ —
(RST + ABORT) » SYC | SPCNI |
| STCNI
A GTSB |
TentR | Gszc; |
RST.SYC »| IDLE @it | | acmive Tcsy | STANDBY |
[_ TCAS |
| A
IALWAYS| EXPP |
| \ |
| PARALLEL
| POLL |
L commouenmonnce |
— - 7
| SREM |
RST —_— =
IABORT tsv_c LOCAL <stoc REMOTE |
L _ _SYSTEMCONTROLLER _ _ _ _ _ |

Figure 13. 8292 Command Flowchart

System Controller then it will end up in an Idle
state.

5. TCI will not be set.
RSTI — Reset Interrupts (Command = 0F3)

This command clears all pending interrupts and
error flags. The 8292 will stop waiting for actions to
occur (e.g., waiting for ATN to go FALSE in a
TCNTR command or waiting for the proper
handshake state ina TCSY command). TCI will not
be set.

ABORT— Abort all operations and Clear Interface
(Command = OF9H)

If the 8292 is not the System Controller this
command acts like a NOP and flags a USER
ERROR in the Error Flag Register. No TCI will
occur.

If the 8292 is the System Controller then IFC is set
TRUE for approximately 100 usec and the 8292
becomes the Controller-in-Charge and asserts ATN.
TCI will be set, only if the 8292 was NOT the CIC.

STCNI — Start Counter Interrupts
(Command = OFEH)

Enables the EV Counter Interrupt. TCI will not be
set. Note that the counter must be enabled by a GSEC
command.

SPCNI — Stop Counter Interrupts
(Command = OFOH)

The 8292 will not generate an EV interrupt when the
counter reaches 0. Note that the counter will
continue counting. TCI will not be set.

SREM — Set Interface to Remote Control
(Command = OF8H)

If the 8292 is the System Controller, it will set REN

14

and TCI TRUE. Otherwise it only sets the User
Error Flag.

SLOC — Set Interface to Local Mode
(Command = OF7H)

If the 8292 is the System Controller, it will set REN
FALSE and TCI TRUE. Otherwise, it only sets the
User Error Flag.

EXPP — Execute Parallel Poll
(Command = OF5H)

If not Controller-in-Charge, the 8292 will treat this
as a NOP and does not set TCI. If it is the Control-
ler-in-Charge then it sets IDY (EOl & ATN) TRUE
and generates a local DAYV pulse (that never reaches
the GPIB because of gates in the 8293). If the 8291 is
configured as a listener, it will capture the Parallel
Poll Response byte in its data register. TCI is not
generated, the CPU must detect the BI (Byte In)
from the 8291. The 8292 will be ready to accept
another command before the BI occurs; therefore
the 8291’s BI serves as a task complete indication.

GTSB — Go To Standby (Command = OF6H)

If the 8292 is not the Controller-in-Charge, it will
treat this command as a NOP and does not set TCI
TRUE. Otherwise, it goes to Controller Standby
State (CSBS), sets ATN FALSE and TCI TRUE.
This command is used as part of the Send, Receive,
Transfer and Serial Poll System commands (see
next section) to allow the addressed talker to send
data/status.

If the data transfer does not start within the specified
Time-Out, the 8292 sets TOUT2 TRUE in the Error
Flag Register and sets SPI (if enabled). The
controller continues waiting for a new command.
The CPU must decide to wait longer or to regain
control and take corrective action.

GSEC — Go to Standby and Enable Counting
(Command = 0F4H)

This command does the same things as GTSB but
also initializes the event counter to the value pre-
viously stored in the Event Counter Register (default
value is 256) and enables the counter. One may wire
the count input to NDAC to count bytes. When the
counter reaches zero, it sets EV (and SPI if enabled)
in Interrupt Status and will set EV every 256 bytes
thereafter. Note that there is a potential loss of
count information if the CPU does not respond to
the EV/SPI before another 256 bytes have been
transferred. TCI will be set at the end of the
command.

TCSY — Take Control Synchronously
(Command = OFDH)

If the 8292 is not in Standbyj, it treats this command
as a NOP and does not set TCI. Otherwise, it waits

for the proper handshake state and sets ATN
TRUE. The 8292 will set TOUT3 if the handshake
never assumes the correct state and will remain in
this command until the handshake is proper or a
RSTI command is issued. If the 8292 successfully
takes control, it sets TCI TRUE.

This is the normal way to regain control at the end of
a Send, Receive, Transfer or Serial Poll System
Command. If TCSY is not successful, then the
controller must try TCAS (see warning below).

TCAS — Take Control Asynchronously
(Command = OFCH)

If the 8292 is not in Standby, it treats this command
as a NOP and does not set TCI. Otherwise, it
arbitrarily sets ATN TRUE and TCI TRUE. Note
that this action may cause devices on the bus to lose
a data byte or cause them to interpreta data byteasa
command byte. Both Actions can result in anoma-
lous behavior. TCAS should be used only in
emergencies. If TCAS fails, then the System
Controller will have to issue an ABORT to clean
things up.

GIDL — Go to Idle (Command = OFIH)

If the 8292 is not the Controller in Charge and
Active, then it treats this command as a NOP and
does not set TCI. Otherwise, it sets ATN FALSE,
becomes Not Controller in Charge, and sets TCI
TRUE. This command is used as part of the Pass
Control System Command.

TCNTR — Take (Receive) Control
(Command = OFAH)

If the 8292 is not Idle, then it treats this command as
a NOP and does not set TCI. Otherwise, it waits for
the current Controller-in-Charge to set ATN
FALSE. If this does not occur within the specified
Time Out, the 8292 sets TOUT]1 in the Error Flag
Register and sets SPI (if enabled). it will not proceed
until ATN goes false or it receives an RSTI
command. Note that the Controller in Charge must
previously have sent this controller (via the 8291’s
command pass through register) a Pass Control
message. When ATN goes FALSE, the 8292 sets
CIC, ATN and TCI TRUE and becomes Active.

SOFTWARE DRIVER OUTLINE

The set of system commands discussed below is
shown in Figure 14. These commands are imple-
mented in software routines executed by the main
CPU.

The following section assumes that the Controller is
the System Controller and will not Pass Control.
This is a valid assumption for 99+% of all
controllers. It also assumes that no DMA or
Interrupts will be used. SYC (System Control Input)

15

should not be changed after Power-on in any system
— it adds unnecessary complexity to the CPU’s
software.

In order to use polling with the 8292 one must enable
TCI but not connect the pin to the CPU’s interrupt
pin. TCI must be readable by some means. In this
application example it is connected to bit 1 port 6FH
on the ZT7488/18. In addition, the other three 8292
interrupt lines and the 8291 interrupt are also on that
port (SPI-Bit 2, IBFI-Bit 4, OBFI-Bit 3, 8291 INT-
Bit 0).

These drivers assume that only primary addresses
will be used on the GPIB. To use secondary
addresses, one must modify the test for valid
talk/listen addresses (range macro) to include
secondaries.

INIT INITIALIZATION

Talker/Listener

SEND SEND DATA
RECV RECEIVE DATA
XFER TRANSFER DATA

Controller
TRIG GROUP EXECUTE TRIGGER
DCLR DEVICE CLEAR
SPOL SERIAL POLL
PPEN PARALLEL POLL ENABLE
PPDS PARALLEL POLL DISABLE
PPUN PARALLEL POLL UNCONFIGURE
PPOL PARALLEL POLL
PCTL PASS CONTROL
RCTL RECEIVE CONTROL
SRQD SERVICE REQUESTED

System Controller

REME REMOTE ENABLE
LOCL LOCAL
IFCL ABORT/INTERFACE CLEAR

Figure 14. Software Driver Routines

INITIALIZATION

8292 — Comes up in Controller Active State when
SYC is TRUE. The only initialization needed is to
enable the TCI interrupt mask. This is done by
writing 0AOH to Port 68H.

8291 — Disable both the major and minor addresses
because the 8291 will never see the 8292’s com-
mands/addresses (refer to earlier hardware discus-
sion). This is done by writing 60H and OEOH to
Port 66H.

Set Address Mode to Talk-only by writing 80H to
Port 64H.

Set internal counter to 3 MHz to match the clock
input coming from the 8085 by writing 23H to Port
65H. High speed mode for the handshakes will not
be used here even though the hardware uses three-
state drivers.

No interrupts will be enabled now. Each routine will
enable the ones it needs for ease of polling operation.
The INT bit may be read through Port 6FH. Clear
both interrupt mask registers.

Release the chip’s initialization state by writing 0 to
Port 65H.

INIT:

Enable-8292
Enable TCI

Enable-8291
Disable major address
Disable minor address
ton
Clock frequency
All interrupts off
Immediate execute pon

;Set up Int. pins for Port 6FH
;Task complete must be on

;In controller usage, the 8291

;Is set to talk only and/or listen only
;Talk only is our rest state

;3 MHz in this ap note example

:Releases 8291 from init. state

TALKER/LISTENER ROUTINES
Send Data

SEND < listener list pointer> <count> <EOS> <data buffer pointer >

This system command sends data from the CPU to
one or more devices. The data is usually a string of
ASCII characters, but may be binary or other forms
as well. The data is device-specific.

My Talk Address (MTA) must be output to satisfy
the GPIB requirement of only one talker at a time
(any other talker will stop when MTA goes out). The
MTA is not needed as far as the 8291 is concerned —
it will be put into talk-only mode (ton).

This routine assumes a non-null listener list in that it

always sends Universal Unlisten. If it is desired to
send data to the listeners previously addressed, one
could add a check for a null list and not send UNL.
Count must be 255 or less due to an 8 bit register.
This routine also always uses an EOS character to
terminate the string output; this could easily be
eliminated and rely on the count. Items in brackets
() are optional and will not be included in the actual
code in Appendix A.

SEND:
Output-to-8291 MTA, UNL
Put EOS into 8291
While 20H < listener < 3EH
output-to-8291 listener
Increment listen list pointer
Output-to-8292 GTSB
Enable-8291
Output EOI on EOS sent
If count < > 0 then
While not (end or count = 0)
(could check tout 2 here)
Output-to-8291 data
Increment data buffer pointer
Decrement count
Output-t0-8292 TCSY
(If tout3 then take control async)
Enable 8291
No output EOI on EOS sent
Return

;We will talk, nobody listen

;End of string compare character

:GPIB listen addresses are

;“space” thru “ > ASCII

;Address all listeners

;8292 stops asserting ATN, go to standby

:Send EOI along with EOS character

;Wait for EOS or end of count
;Optionally check for stuck bus-tout 2
;Output all data, one byte at a time
;8085 CREG will count for us

;8292 asserts ATN, take control sync.
;If unable to take control sync.
;Restore 8291 to standard condition

l RECV 1

IN INT1
SAVE IN B

|

MOV AB

IN INT1

B = 40H >

{ RECV 5§

TCSY

Figure 15. Flowchart For Receive Ending Conditions

Receive Data

CONTROLLER
8291,8292

TN
Lﬁ!u CTLR

DEVICE

TALK

DEVICE

DEVICE

DEVICE

Figure 16. SEND to “1”, 72", ”>"; “ABCD”; EOS = “D”

RECV <talker> <count> <EOS> <data buffer pointer>

This system command is used to input data from a
device. The data is typically a string of ASCII
characters.

This routine is the dual of SEND. It assumes a new
talker will be specified, a count of less than 257, and
an EOS character to terminate the input. EOI
received will also terminate the input. Figure 15
shows the flow chart for the RECV ending
conditions. My Listen Address (MLA) is sent to
keep the GPIB transactions totally regular to

17

facilitate analysis by a GPIB logic analyzer like the
Ziatech ZT488. Otherwise, the bus would appear to
have no listener even though the 8291 will be
listening.

Note that although the count may go to zero before
the transmission ends, the talker will probably be
left in a strange state and may have to be cleared by
the controller. The count ending of RECV is
therefore used as an error condition in most
situations.

RECV:

Put EOS into 8291 ;End of string compare character
If 40H < talker < 5EH then :GPIB talk addresses are
Output-to-8291 talker “@” thru “A” ASCII
Increment talker pointer ;Do this for consistency’s sake
Output-to-8291 UNL, MLA ;Everyone except us stop listening
Enable-8291
Holdoff on end ;Stop when EOS character is
End on EOS received ;Detected by 8291
lon, reset ton ;Listen only (no talk)
Immediate execute pon
Output-to-8292 GTSB ;8292 stops asserting ATN, go to standby
While not (end or count = 0 (or tout2)) ;wait for EOS or EOI or end of count
;optionally check for stuck bus-tout2
Input-from-8291 data ;input data, one byte at a time
Increment data buffer pointer
Decrement count ;Use 8085 C register as counter
(If count = 0 then error) ;Count should not occur before end
Output-to-8292 TCSY :8292 asserts ATN take control
(If Tout3 then take control async.) :If unable to take control sync.
Enable-8291 ;Put 8291 back as needed for
No holdoff on end ;Controller activity and
No end on EOS received ;Clear holdoff due to end
ton, reset lon
Finish handshake ;Complete holdoff due to end, if any
Immediate execute pon :Needed to reset lon

Return error-indicator

CONTROLLER CONTROLLER
8291,8292 8291,8292
TALK LSTN TALK
CTLR A" yn CTLR e
DEVICE DEVICE
LSTN TALK TALK
povh wq “Q
DEVICE DEVICE
LSTN TALK
g R
DEVICE DEVICE
LSTN TALK TALK
e s Mo
DEVICE DEVICE
LSTN TALK LSTN
usn “pAn e
Figure 17. RECV from “R”; EOS = 0DH Figure 18. XFER from “A” to “17, “2”, “+”; EOS = ODH

Transfer Data
XFER <Talker > < Listener list> < EOS >

This system command is used to transfer data froma
talker to one or more listeners where the controller
does not participate in the transfer of the ASCII
data. This i1s accomplished through the use of the
8291’s continuous acceptor handshake mode while
in listen-only.

This routine assumes a device list that has the ASCII
talker address as the first byte and the string (one or
more) of ASCII listener addresses following. The
EOS character or an EOI will cause the controller to
take control synchronously and thereby terminate
the transfer.

XFER:

Output-to-8291: Talker, UNL
While 20H < listen < 3EH
Output-to-8291: Listener

Increment listen list pointer
Enable-8291

lon, no ton

Continuous AH mode

End on EOS received

Immediate execute PON
Put EOS into 8291
Output-to-8292: GTSB

Upon end (or tout2) then
Take control synchronously
Enable-8291
Finish handshake
Not continuous AH mode
Not END on EOS received
ton
Immediate execute pon
Return

:Send talk address and unlisten

;Send listen address

;Controller is pseudo listener
;Handshake but don’t capture data
;Capture EOS as well as EOl
;Initialize the 8291

;Set up EOS character

;Go to standby

;8292 waits for EOS or EOI and then

;Regains control
;Go to Ready for Data

CONTROLLER
Group Execute Trigger
TRIG < Listener list >

This system command causes a group execute
trigger (GET) to be sent to all devices on the listener

list. The intended use is to synchronize a number of
instruments.

TRIG:
Output-to-8291 UNL
While 20H < listener < 3EH
Output-to-8291 Listener
Increment listen list pointer
Output-to-8291 GET
Return

;Everybody stop listening

;:Check for valid listen address
;Address each listener

;Terminate on any non-valid character
;Issue group execute trigger

19

CONTROLLER
8291,8292

LSTN

DEVICE

DEVICE

LSTN TALK
g wpn

DEVICE

DEVICE

LSTN TALK
e “AT

Figure 19. TRIG “17, “+”

CONTROLLER
8291,8292

LSTN
e

DEVICE

DEVICE

DEVICE

DEVICE

LSTN TALK

Figure 20. DCLR “1”, “2”

Device Clear
DCLR < Listener list >
This system command causes a device clear (SDC)

to be sent to all devices on the listener list. Note
that this is not intended to clear the GPIB interface

of the device, but should clear the device-specific
logic.

DCLR:
Output-t0-8291 UNL
While 20H < Listener < 3EH
Output-to-8291 listener
Increment listen list pointer
Output-to0-8291 SDC
Return

;Everybody stop listening

;Check for valid listen address
;Address each listener

;Terminate on any non-valid character
:Selective device clear

Serial Poll
SPOL <Talker list> < status buffer pointer >
This system command sequentially addresses the

designated devices and receives one byte of status
from each. The bytes are stored in the buffer in the

same order as the devices appear on the talker list.
MLA is output for completeness.

20

SPOL:
Output-to-8291 UNL, MLA, SPE

While 40H < talker < SEH
Output-to-8291 talker
Increment talker list pointer
Enable-8291

lon, reset ton

Immediate execute pon
Output-t0-8292 GTSB
Wait for data in (BI)
Output-to-8292 TCSY
Input-from-8291 data
Increment buffer pointer
Enable 8291

ton, reset lon

Immediate execute pon

Output-to-8291 SPD

;Unlisten, we listen, serial poll enable
;Only one byte of serial poll

;Status wanted from each talker
:Check for valid transfer

;Address each device to talk

;One at a time

;Listen only to get status

:This resets ton

;Go to standby

;Serial poll status byte into 8291
;Take control synchronously
;Actually get data from 8291

;Resets lon
;Send serial poll disable after all devices polled

Return
CONTROLLER CONTROLLER
8291,8292 8291,8292
TALK LSTN TALK
CTLR “A” e A"
DEVICE DEVICE
> LSTN TALK
o s
DEVICE DEVICE
LSTN TALK
o R
DEVICE DEVICE
> LSTN TALK
e “K”
DEVICE DEVICE
LSTN > LSTN TALK

Figure 21. SPOL “Q”, “R“, “K", “* /\”

Parallel Poll Enable

PPEN < Listener list> < Configuration Buffer pointer >

This system command configures one or more
devices to respond to Parallel Poll, assuming they
implement subset PP1. The configuration informa-
tion is stored in a buffer with one byte per device
in the same order as devices appear on the listener

21

Figure 22. PPEN “2”; iP;,P,P, = 0111B

list. The configuration byte has the format
XXXXIP3P2P1 as defined by the IEEE Std. P3P2P1
indicates the bit # to be used for a response and |
indicates the assertion value. See Sec. 2.9.3.3 of the
Std. for more details.

PPEN:

Output-to-8291 UNL

While 20H < Listener < 3EH
Output-to-8291 listener
Output-to-8291 PPC, (PPE or data)
Increment listener list pointer
Increment buffer pointer

Return

:Universal unlisten
:Check for valid listener

;Stop old listener, address new
;Send parallel poll info

:Point to next listener

;One configuration byte per listener

Parallel Poll Disable

PPDS <listener list >
This system command disables one or more devices

from res

ponding to a Parallel Poll by issuing a

Parallel Poll Disable (PPD). It does not decon-

figure the devices.

PPDS:
Output-to-8291 UNL
While 20H < Listener < 3EH
Output-to-8291 listener
Increment listener list pointer
Output-to-8291 PPC, PPD
Return

;Universal Unlisten
;Check for valid listener
;Address listener

:Disable PP on all listeners

LSTN

CONTROLLER
8291,8292

TALK

DEVICE

DEVICE

DEVICE

Figure 23. PPDS “17, “+”, “>”

22

LSTN

CONTROLLER
8291,8292

LSTN

DEVICE

TALK
“Q”

DEVICE

DEVICE

DEVICE

Figure 24. PPUN

Parallel Poll Unconfigure
PPUN

This system command deconfigures the Parallel Poll
response of all devices by issuing a Parallel Poll
Unconfigure message.

PPUN:
Output-to-8291 PPU
Return

;Unconfigure all parallel poll

Conduct a Parallel Poll
PPOL

This system command causes the controller to con-
duct a Parallel Poll on the GPIB for approximately
12.5 usec (at 6 MHz). Note that a parallel poll does
not use the handshake; therefore, to ensure that the
device knows whether or not its positive response

was observed by the controller, the CPU should
explicitly acknowledge each device by a device-
dependent data string. Otherwise, the response bit
will still be set when the next Parallel Poll occurs.
This command returns one byte of status.

PPOL:

Enable-8291

lon

Immediate execute pon
Output-t0-8292 EXPP
Upon BI

Input-from-8291 data
Enable-8291

ton

Immediate execute pon
Return Data (status byte)

;Listen only

;This resets ton
;Execute parallel poll
;When byte is input
;:Read it

; Talk only
;This resets lon

Pass Control
PCTL <talker >

This system command allows the controller to
relinquish active control of the GPIB to another
controller. Normally some software protocol should
already have informed the controller to expect this,
and under what conditions to return control. The

8291 must be set up to become a normal device
and the CPU must handle all commands passed
through, otherwise control cannot be returned (see
Receive Control below). The controller will go idle.

PCTL:
If 40H < talker < SEH then
if talker <« > MTA then

output-to-8291 talker, TCT

Enable-8291
not ton, not lon
Immediate execute pon
My device address, mode 1

Undefined command pass through

(Parallel Poll Configuration)
Output-to-8292 GIDL
Return

;Cannot pass control to myself
;Take control message to talker
;Set up 8291 as normal device

;Reset ton and lon

;Put device number in Register 6
;Required to receive control
;Optional use of PP

;Put controller in idle

Figure 25. PPOL

CONTROLLER
8291,8292
TALK
b
Sl Z
HE
- pio 1 DEVICE
»| LSTN TALK
s Qe
B DIO 2 DEVICE
» LSTN TALK
ey ek
< DIO 3 DEVICE
> LSTN TALK
e bovas
DEVICE
o > LsTn TALK
o byes

Receive Control
RCTL

This system command is used to get control back
from the current controller-in-charge if it has passed
inactive controller.
systems do not use more than one controller and

control to this

therefore would not need this routine.

To make passing and receiving control a man-
ageable event, the system designer should specify a

Most GPIB

CONTROLLER
8291,8292

LSTN TALK

!
DEVICE
[LSTN TALK
o Q-
DEVICE
[LSTN TALK
ot R
> DEVICE
LSTN TALK
DEVICE
£>> LSTN TALK
g bye
LSTN CTLR
bt
CONTROLLER

Figure 26. PCTL “C”

protocol whereby the controller-in-charge sends a
data message to the soon-to-be-active controller.
This message should give the current state of the
system, why control is being passed, what to do,
and when to pass control back. Most of these issues
are beyond the scope of this Ap Note.

RCTL:

Upon CPT
If (command=TCT) then

If TA then

Enable-8291

Disable major device number

ton

Mask off interrupts
Immediate execute pon

;Wait for command pass through bit in 8291
;If command is take control and
;We are talker addressed

;Controller will use ton and lon o
;Talk only mode

24

Output-to-8292 TCNTR ;Take (receive) control
Enable-8291

Valid command ;Release handshake
Return valid
Else
Enable-8291
Invalid command :Not talker addr. so TCT not for us
Else
Enable-8291
Invalid command ;:Not TCT, so we don’t care

Return invalid

SYSTEM
CONTROLLER CONTROLLER
8291,8292 8291,8292

CTLR

LSTN
oy

P4
w
o
DEVICE
> - DEVICE
LSTN TALK LSTN TALK
1" Qr "1 “Q”
DEVICE
> _ DEVICE
LSTN TALK LSTN TALK
2" “R” g “R"
DEVICE
> . DEVICE
LSTN TALK LSTN TALK
DEVICE
DEVICE
LSTN TALK LSTN TALK
LSTN TALK A A
o fose
CONTROLLER
Figure 27. RCTL Figure 28. REME
Service Request
SRQD
This system command is used to detect the occur- the CPU would normally conduct a Serial Poll
rence of a Service Request on the GPIB. One or after calling this routine to determine which devices
more devices may assert SRQ simultaneously, and are SRQing.

25

SRQD:
If SRQ then
Output-to-8292 IACK.SRQ
Return SRQ
Else return no SRQ

;Test 92 status bit
;Acknowledge it

SYSTEM CONTROLLER
Remote Enable
REME

This system command asserts the Remote Enable
line (REN) on the GPIB. The devices will not go

remote until they are later addressed to listen by
some other system command.

REME:
Output-to-8292 SREM
Return

:8292 asserts remote enable line

Local
LOCL

This system command deasserts the REN line on the
GPIB. The devices will go local immediately.

LOCL:
Output-to-8292 SLOC ;8292 stops asserting remote enable
Return
SYSTEM
SYSTEM
CONTROLLER
5291 8292 CONTROLLER
LSTN TALK LSTN TALK
“n A" . “A”
Z g
u e
_ DEVICE DEVICE
LSTN TALK LSTN TALK
"1 Q" “y “Q”
- DEVICE ‘ DEVICE
LSTN TALK LSTN TALK
' “R” “2r “R”
- DEVICE > DEVICE
LSTN TALK LSTN
DEVICE DEVICE
LSTN TALK LSTN TALK
v pl e

Figure 29. LOCL

Figure 30. IFCL

26

Interface Clear/Abort
IFCL

This system command asserts the GPIB’s Interface
Clear (IFC) line for at least 100 microseconds.
This causes all interface logic in all devices to go to
a known state. Note that the device itself may or

may not be reset, too. Most instruments do totally
reset upon IFC. Some devices may require a DCLR
as well as an IFCL to be completely reset. The
(system) controller becomes Controller-in-Charge.

[FCL:
Output-t0-8292 ABORT
Return

;8292 asserts Interface Clear
;For 100 microseconds

INTERRUPTS AND
DMA CONSIDERATIONS

The previous sections have discussed in detail how
to use the 8291, 8292, 8293 chip set as a GPIB
controller with the software operating in a polling
mode and using programmed transfer of the data.
This is the simplest mode of use, but it ties up the
microprocessor for the duration of a GPIB transac-
tion. If system design constraints do not allow this,
then either Interrupts and/or DMA may be used to
free up processor cycles.

The 8291 and 8292 provide sufficient interrupts that
one may return to do other work while waiting for
such things as 8292 Task Completion, 8291 Next
Byte In, 8291 Last Byte Out, 8292 Service Request

In, etc. The only difficulty lies in integrating these
various interrupt sources and their matching
routines into the overall system’s interrupt structure.
This is highly situation-specific and is beyond the
scope of this Ap Note.

The strategy to follow is to replace each of the WAIT
routines (see Appendix A) with a return to the main
code and provide for the corresponding interrupt to
bring the control back to the next section of GPIB
code. For example WAITO (Wait for Byte Out of
8291) would be replaced by having the BO interrupt
enabled and storing the (return) address of the next
instruction in a known place. This co-routine
structure will then be activated by a BO interrupt.
Fig. 31 shows an example of the flow of control.

MAIN CODE INTERRUPT CODE GPIB SUBROUTINE
USER: SEND:
ACTIVAT/ =
SEND (WAIT 0)

T

INT: =— —

/ GPIB BO?//:_
J— (WAIT 0)

/ GPIB BO? /:
(WAIT T)

gmu

GPIB TCI”

HWHHHHWHHHHIHHHHHHHHHHIHIHWH!HHHH|

m
-
(2]

m
-
(2]

Figure 31. GPIB Interrupt & Co-Routine Flow of Control

27

DMA is also useful in relieving the processor if the
average length of a data buffer is long enough to
overcome the extra time used to set upa DMA chip.
This decision will also be a function of the data rate
of the instrument. The best strategy is to use the
DMA to handle only the data buffer transfers on
SEND and RECV and to do all the addressing and
control just as shown in the driver descriptions.

Another major reason for using a DMA chip is to
increase the data rate and therefore increase the
overall transaction rate. In this case the limiting
factor becomes the time used to do the addressing
and control of the GPIB using software like that in
Appendix A. The data transmission time becomes
insignificant at DMA speeds unless extremely long
buffers are used.

Refer to Figure 11 for a typical DMA and interrupt
based design using the 8291, 8292, 8293, A system
like this can achieve a 250K byte transfer rate while
under DMA control.

APPLICATION EXAMPLE

This section will present the code required to operate
a typical GPIB instrument set up as shown in Fig.
32. The HPS5328A universal counter and the
HP3325 function generator are typical of many
GPIB devices; however, there are a wide variety of
software protocols to be found on the GPIB. The
Ziatech ZT488 GPIB analyzer is used to single step
the bus to facilitate debugging the system. It also
serves as a training/familiarization aid for new-
comers to the bus.

This example will set up the function generator to
output a specific waveform, frequency and ampli-

tude. It will then tell the counter to measure the
frequency and Request Service (SRQ) when com-
plete. The program will then read in the data. The
assembled source code will be found at the end of
Appendix A.

ZT7488/18
CONTROLLER

LSTN TALK
ap CTLR A

HP 5328A
COUNTER

LSTN TALK
wqn “Q”

HP 3325A
FUNCTION
GENERATOR

LSTN TALK
ugn e

ZT488
GPIB ANALYZER

Figure 32. GPIB Example Configuration

SEND

LSTN: “2”, COUNT: 15, EOS: 0ODH, DATA: “FUIFR37KHAM2VO (CR)”
;SETS UP FUNCTION GEN. TO 37 KHZ SINE, 2 VOLTS PP

;COUNT EQUAL TO # CHAR IN BUFFER

;EOS CHARACTER IS (CR) = 0DH = CARRIAGE RETURN

SEND

LSTN: “1”, COUNT: 6, EOS: “T” DATA: “PR4G71”
SETS UP COUNTER FOR P:INITIALIZE, F4: FREQ CHAN A
G7:0.1 HZ RESOLUTION, T:-TRIGGER AND SRQ

COUNT IS EQUAL TO # CHAR
WAIT FOR SRQ
SPOL TALK: “Q”, DATA: STATUS 1

;CLEARS THE SRO —IN THIS EXAMPLE ONLY FREQ CTR ASSERTS SRQ

RECV TALK: “Q”, COUNT: 17, EOS: 0AH,

DATA: “+ 37000.0E+0” (CR) (LF)

;GETS 17 BYTES OF DATA FROM COUNTER

;COUNT IS EXACT BUFFER LENGTH

;DATA SHOWN IS TYPICAL HP5328A READING THAT WOULD BE RECEIVED

CONCLUSION

This Application Note has shown a structured way
to view the IEEE 488 bus and has given typical code
sequences to make the Intel 8291, 8292, and 8293’s
behave as a controller of the GPIB. There are other
ways to use the chip set, but whatever solution is
chosen, it must be integrated into the overall system
software.

The ultimate reference for GPIB questions is the
IEEE Std 488, -1978 which is available from IEEE,
345 East 47th St., New York, NY, 10017. The ulti-
mate reference for the 8292 is the source listing for it
(remember it’s a pre-programmed UPI-41A) which
is available from INSITE, Intel Corp., 3065 Bowers
Ave., Santa Clara, CA 95051.

APPENDI

ISIS-I1I 8080@/8385 MACRO ASSEMBLER, V3.0
GPIR CONTROLLER SUBROUTINES

XA

LOC LINE SOURCE STATEMENT
1 STITLE('GPIB CONTROLLER SUBROUTINES')
2 ;
3 GPIB CONTROLLER SUBROUTINES
4
5 ;
6 ; for Intel 8291, 8292 on ZT 7488/18
7 ; Bert Forbes, Ziatech Corporation
8 ; 2410 Broad Street
9 ; San Luis Obispo, CA, USA 93401
10 ;
11 ;
12 ; General Definitions & Equates
13 ; 8291 Control Values
14 ;
1009 15 ORG 100924 ; For 2T7488/18 w/8085
16 ;
3050 17 PRTI1 EQU AOH ;8291 Base Port #
18 ;
19 ; Reg #0 Data in & Data out
3969 20 DIN EQU PRT91+4 ;91 Data in reg
0369 21 DOUT EQU PRT91+3 ;91 Data out reg
22 ;
23 ; Reg # 1 Interrupt 1 Constants
9061 24 INT1 EQU PRT91+1 ;INT Reqg 1
3061 25 INTM1 EQU PRT91+1 ;INT Mask Reg. 1
3082 26 BOM EQU A2 ;91 BO INTRP Mask
g001 27 BIM EQU g1 ;91 BI INTRP Mask
2010 28 ENDMK EQU 10H ;91 END INTRP Mask
3389 29 CPT EQU 83H ;91 command pass thru int hit
30 ;
31 ; Reg #2 Interrupt 2
0062 32 INT2 EQU PRT91+2
33 ;
34 ; Reg k4 Address Mode Constants
2064 35 ADRMD EQU PRT91+4 ;91 address mode register #
#0389 36 TON EQU 80H ;91 talk only mode & not listen only
$a40 37 LON EQU 40H ;91 listen only & not ton
20C8 38 TLON EQU ACPH ;91 talk & listen only
001 39 MODE1l EQU 21 ;mode 1 addressing for device
49
41 ; Reqg #4 (Read) Address Status Register
2964 42 ADRST EQU PRT91+4 ;reqg #4
320 43 EOIST EQU 29H
pea2 44 TA EQU 2
2001 45 LA EQU 1 ;listener active
46 ;
47 ; Reg #5 (Write) Auxillary Mode Register
2065 48 AUXMD EQU PRT91+5 ;91 auxillary mode register #
3023 49 CLKRT EQU 234 ;91 3 Mhz clock input

29

2903
a996
a289
f3a1
onp2
093
2004
a008
A00F
0007
QOAD
3991

3365

3066
2069
QAED

2067

3068

3968
20A0

aB68
2371
3302
9004
2968
2068

0069

2969
910
0ga2
020

2068
A068
nn68
AP68
2068

BOFQ
#OF1
A0F2
AOF3
0oF4
AGFS5
APF6
gaF7
goF8
03F9
GOFA
goFC
@aFD
gOFE

Se Se Se Se Se o~

. PRT92

’
INTMR
INTM

ERRM

TOUT1
TOUT?2
TOUT3
EVREG
TOREG

CMD92

’

INTST
EVBIT
IBFBT
SROBT

’
ERFLG
CLRST
BUSST
EVCST
TOST

o Ne se S

’
SPCNI
GIDL
RSET
RSTI
GSEC
EXPP
GTSB
SLOC
SREM
ABORT
TCNTR
TCASY
TCSY
STCNI

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

Reg
EQU

Reg
EQU
EQU
EQU

Reg
EQU

8292

EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU

EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU

8292

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

#5

#7

AFH
@74
BA0H
A1H

(Read)
PRTI91+5

Address
PRT91+h
63 H
2EGH

EOS
PRTI91+7

CONTROL

PRT91+8

PRT92+0
AAZH

PRT92+9

PRTI92+04
PRT92+0

PRT92+1

PRT92+1
104

732

20H

PRT92+9
PRT92+0
PRT92+0
PRT92+0
PRT92+0

;91 fininsh handshake command
;91 send EOI with next byte

;91 aux. reg A pattern

;791 hold off handshake on all bytes
;91 hold off handshake on end
;91 continuous AH cycling

;91 end on EOS received

;91 output EOI on EOS sent

;91 valid command pass through
;91 invalid command pass through
;Aux. reg. B pattern

;command pass thru enable

#/1 reg. constants

;Disable major talker & listener
;Disable minor talker & listener

Character Register

VALUES

;8292 Base Port # (CS7)

;92 INTRP Mask Reg
;TCI

;92 Error Mask Reg

;92 Time Out for Pass Control

792 Time Out for Standby

;92 Time Out for Take Control Sync
;92 Event Counter Pseudo Reg

;92 Time Out Pseudo Reg

;92 Command Register

;92 Interrupt Status Reg
;Event Counter Bit

; Input Buffer Full Bit
;Seq bit

792 Error Flag Pseudo Reg ™~
792 Controller Status Pseudo Reg

792 GPIB (Bus) Status Pseudo Reg

;792 Event Counter Status Pseudo Reg

792 Time Out Status Pseudo Reg

OPERATION COMMANDS

OFQOH
OF1H
AF2H
OF3H
AF4H4
@F5H
AF6H
AFTH
AF8H
AF9H
OFAH
BFCH
AFDH
AFEH

;Stop Counter Interrupts

;Go to idle

;Reset

;Reset Interrupts

;Goto standby, enable counting
;Execute parallel poll

;Goto standby

;Set local mode

;Set interface to remote

;Abort all operation, clear interface
;Take control (Receive control)

;Take control asyncronously N
;Take control syncronously

;Start counter interrupts

30

G0E1
gOE?2
JBE3
B0E4
2QES
BOE6
2087
ABE9
GAEA
2008

Ba6F
0092
2004
0908
pa1e
aaal

2001
2241
9821
AP3F
3098
oanga
P18
2919
3095
#0370
2069
3315
2909

160
161
162
163
164
165
166
167
168
169
179
171
172
173
174
175
176
177
178
179
189
181
182
183
184
185
1856
187
188
189
199
191
192
193
194
195

~ “o

’
WOuT
WEVC
REVC
RERF
RINM
RCST
RBST
RTOUT
RERM
IACK

¢ me v wms e Se

’
PRTF
TCIF
SPIF
OBFF
IBFF
BOF

’

MDA
MTA
MLA
UNL
GET
SDC
SPE
SPD
PPC
PPD
PPE
PPU
TCT

L) S ~e Se N

ETF

H
WAITO

WAITL:

H
H
WAITI

WAITL:

WAITX

WAITL:

8292

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

UTILITY COMMANDS

AE1H ;Write to timeout reg

JE2H ;Write to event counter
@E3H ;Read event counter status
AE4H ;Read error flag reg

AESH ;Read interrupt mask reg
@E6H ;Read controller status reg
@E7H ;Read GPIB Bus status reg
AE9H ;Read timeout status reg
PEAH ;Read error mask reg

ABH ;Interrupt Acknowledge

PORT F BIT ASSIGNMENTS

EQU
EQU
EQU
EQU
EQU
EQU

PRT91+AFH ;277488 port 6F for interrupts
@2H ;Task complete interrupt

@4H ;Special interrupt

@8H ;92 Output (to CPU) Buffer full

10H 792 Input (from CPU) Buffer empty

A1H ;91 Int line (BO in this case)

GPIB MESSAGES (COMMANDS)

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

1 ;My device address is 1
MDA+4¢H ;My talk address is 1 ("A")
MDA+2@H ;My listen address is 1 ("t")

3FH ;Universal unlisten

38 ;Group Execute Triqger

344 ;Device Clear

18H ;Serial poll enable

19H ;Serial poll disable

/1) ;Parallel poll confiqgure
70H ;Parallel poll disable

6AH ;Parallel poll disable

15H ;Parallel poll unconfigured
79 ;Take control (pass control)

MACRO DEFINITIONS

MACRO
ORA
ENDM

MACRO
LOCAL
IN
ANI
Jz
ENDM

MACRO
LOCAL
IN
MOV
ANI
JZ
ENDM

MACRO
LOCAL
IN
ANI
JINZ
ENDM

;Sets flags on A reqgister

A
;Wait for last 91 byte to be done
WAITL
INT1 ;Get Intl status
BOM ;Check for byte out

WAITL ;If not, try again
;until it is

;Wait for 91 hyte to be input

WAITL

INT1 ;Get INT1 status
B,A ;Save status in B
BIM ;Check for byte in

WAITL ;If not, just try again
;until it is

;Wait for 92's TCI to go false
WAITL
PRTF
TCIF
WAITL

31

196 WAITT MACRO

197 LOCAL WAITL
198 WAITL: 1IN PRTF ;Get task complete int,etc.
199 ANI TCIF ;Mask it
200 Jz WAITL ;Wait for task to be complete
201 ENDM
202
203 RANGE MACRO LOWER,UPPER, LABEL
204 ;Checks for value in range
245 ;branches to label if not
206 ;in range. Falls through if
207 ;lower <= ((H) (L)) <= upper.
208 ;Get next byte.
209 MOV A,M
210 CPI LOWER
211 JM LABEL
212 CpPI UPPER+1
213 JpP LABEL
214 ENDM
215 ;
216 CLRA MACRO
217 XRA A ;A XOR A =0
218 ENDM
219 ;
220 ; All of the following routines have these common
221 ; assumptions about the state of the 8291 & 8292 upon entry
222 ; to the routine and will exit the routine in an identical state.
223 ;
224 ;
225 ; 8291: BO is or has been set,
226 ; All interrupts are masked off
227 ; TON mode, not LA
228 ; No holdoffs in effect or enabled
229 ; No holdoffs waiting for finish command
230 ;
231 ; 8292: ATN asserted (active controller)
232 ; note: RCTL is an exception--- it expects
233 ; to not be active controller
234 ; Any previous task is complete & 92 is
235 ; ready to receive next command.
236 ; 8085: Pointer registers (DE,HL) end one
237 ; beyond last legal entry
238 ;**********************'k********************************
239 ;
240 ;
241 ; INITIALIZATION ROUTINE
242 ;
243 ; INPUTS: None
244 ;0UTPUTS: None
245 ;CALLS: None
246 ;DESTROYS: A,F
247 ;
1003 3EAQ 248 INIT: MVI A,INTM ;Enable TCI
1092 D368 249 our INTMR ;Output to 92's intr. mask reg
1004 3E63 250 MVI A,DTDL1 ;Disable major talker/listener
1006 D366 251 our ADR@1
1098 3EEQ 252 MVI A,DTDL2 ;Disable minor talker/listener
173A D365 253 our ADRA1
199C 3E89 254 MVI A, TON ;Talk only mode
1A0E D364 255 ouT ADRMD
1019 3E23 256 MVI A,CLKRT ;3 MHZ for delay timer
1912 D3A/5 257 our AUXMD
258 CLRA
1314 AF 259+ XRA A ;A XOR A =0
1615 D361 260 ouT INT1
1017 D362 261 our INT2 ;Disable all 91 mask bits
1019 D355 262 ouT AUXMD ;Immediate execute PON
1818 C9 263 RET
264 ;
265 ;***
266 ;
267 ;
268 ; SEND ROUTINE
269 ;

32

191C
101E

1920
1922
1824
1927
1629
1628
192C

102E
182F
1931
1034
1436

1439
1938
183D
1049
1941
1043
1444

1047
1249
1048

134E
1059
1052
1054

19455
1958
1045A

195D
105F
1961

1064

1865
1865
1469
196A
186C

3E41
D348

DB61
E622
CA2010
3E3F
D369
78
D357

7E
FE20Q
FA4710
FE3F
F24710

DB61
E622
CA3919

C32E14

DB61
E602
CA4710

3EF6
D369
3E88
D365

DB6F
E632
C25510

DB&F
E6%2
CAS5SD19

79

B7
CA8810
1A
D350
B8

278 ;
271
272
273
274
275
276
277
278
279
289
281
282
283
284
285+220393981:
286+

287+

288

289

290

291

292

293 SENDI1:
294+

295+

295+

297+

298+

299+

300+

301+

302+

303+

304
305+2209332:
306+

397+

398

309

310

311

312

313 SEND2:
3144220023
315+

316+

317

318

319

320

321

322

323
3244220324
325+

326+

327
328+2?230405:
329+
339+
331
332
333
334
335
336+
337
338 SEND3:
339

340

341

342

U Se Se So Ss e S5 we Se we Se we

END:

~ we

INPUTS: HL listener list pointer
DE data buffer pointer
C count-- 0 will cause no data to be sent
b EOS character-- software detected
QUTPUTS: none
CALLS: none
DESTROYS: A, C, DE, HL, F
MVI A,MTA ;Send MTA to turn off any
our DOUT ;previous talker
WAITO
IN INT1 ;Get Intl status
ANI BOM ;Check for byte out
J2Z 2?8941 ;If not, try again
MVI A,UNL ;Send universal unlisten
our DOUT ;to stop previous listeners
MOV A,B :;Get EQOS character
our EOSR ;0utput it to 8291
;while listener.....
RANGE 20H,3EH,SEND2 ;Check next listen address
;Checks for value in range
;branches to label if not
;in range. Falls through if
;lower <= ((H) (L)) <= upper.
;Get next byte,
MOV A,M
CPI 204
JM SEND2
CPI 3EH+1
JP SEND2
NAITO ;Wait for previous listener sent
IN INT1 ;Get Intl status
ANI BOM ;Check for byte out
Jz ?2?280082 ;If not, try again
MOV A, M ;Get this listener
our pour ;Output to GPIB
INX H ;Increment listener list pointer
JMp SEND1 ;Loop till non-valid listener
;Enable 91 ending conditions
WAITO ;Wait for 1lstn addr accepted
IN INT1 ;Get Intl status
ANI BOM ;Check for byte out
Jz 2?20093 ;If not, try again
;WAITO required for early versions
;0f 8292 to avoid GTSB before DAC
MVI A,GTSB ;Goto standby
ouT CMD92 ;
MVI A,AXRA+EQIS ;Send EOI with EOS character
ouT AUXMD
WAITX ;Wait for TCI to go false
IN PRTF
ANT TCIF
INZ 2273304
WAITT ;Wait for TCI on GTSB
IN PRTF ;Get task complete int,etc.
ANI TCIF sMask it
Jz 2?0995 ;Wait for task to be complete

delete next 3 instructions to make count of #=256f

MOV A,C ;Get count

SETF ;Set flags

ORA A

Jz SEND#A ;1f count=9, send no data
LDAX D ;Get data byte

ouT DouT ;Output to GPIB

CMP B ;Test EOS ...this is faster

;and uses

less code than using

;91's END or EOI bits

33

146D

1470
1072
1074
19717
1078
1879
1g7C
187F
1082

1981
1283
1485

1488
108A
108C
1¢8E

1499
1292
1094

1497
1999
1498
109E

199F
10A9

10A2
19A3
18A5
10A8
10AA

10AD
10AF

1089
1982
1084
1487
1289

1988
198D
19BF

CATF1f

DB61
E692

DB61
E632
CA811@

3EFD
D369
3E89
D365

DBSF
£E602
C29910

DB6F
EAB2
CAS9714
c9

78
D367

7E
FE40
FA3911
FESF
F23911

D360
23

DB61
EAB2
CABQ1M
3E3F
D360

DBA1
E602
CABB1@

343
344
345+
346+
347+
348
349
350
351
352
353
354

355+
356+
357+
358
359
369
361
362
363
364+
3A5+
365+
367
368+
369+
370+
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
384
387
388
389
390
391
392
393+
394+
395+
396+
397+
398+
399+
432+
401+
an2+
403
404
495
406
407+
408+
409+
419
411
412
413+
414+
415+

Jz
SEND4: WAITO
220096 IN
ANI
Jz
INX
DCR
JINZ
Jvp
SENDS5: INX
DCR
WAITO

?2?20007: IN
ANI
Jz

SENDA: MVI
ouT
MVI
OouT
WAITX

?220028: IN
ANT
JINZ
WAITT

?2?29999: IN
ANT
Jz
RET

; INPUT:

’
’
’
’
’
’
’
’
’

;OUTPUT:
;CALLS:
; DESTROYS:

; RETURNS :

[oI TR TR

ECV: MoV
our
RANGE

MOV

CPI

CPI
Jp
our
INX
WAITO

?2?20414: IN
ANI
JZ
MVI
our
NAITO

2?28811: IN
ANT
Jz

SENDS ;If char = EOS , go finish

INT1 ;Get Intl status

BOM ;Check for byte out
2?0006 ;If not, try again

D ;Increment buffer pointer
C ;Decrement count

SEND3 ;If count < > @, go send
SENDS ;Else go finish

D ;for consistency
C ; n "
;This ensures that the standard entry
INT1 ;Get Intl status
BOM ;Check for byte out

?2?209807 ;If not, try again
;assumptions for the next subroutine are met
A,TCSY ;Take control syncronously

CMD92
A,AXRA ;Reset send EOI on EOS
AUXMD
;Wait for TCI false
PRTF
TCIF
220498
;Wait for TCI
PRTF ;Get task complete int,etc.
TCIF ;Mask it

2?0999 ;Wait for task to he complete

KA I AR AR AR AR R AR AR KRR AR R AR AR KRR AAKR KRR KRR A AR AR R AR AR A AR A A A kA Ak Ahk kR kA hkh k&

RECEIVE ROUTINE

HL talker pointer

DE data buffer pointer

C count (max buffer size) 8 implies 254
B EOS character

Fills buffer pointed at by DE

None

A, BC, DE, HL, F

A=@ normal termination--EOS detected
A=40 Error—--- count overrun
A<40 or A>5EH Error—--- bad talk address

A,B ;Get EOS character

EOSR ;O0utput it to 91

404, 5EH,RECVA
;Checks for value in range
;branches to label if not
;in range. Falls through if
;lower <= ((H) (L)) <= upper.
;Get next byte.

A,M
404
RECV6
SEH+1
RECV6
;valid if 40H<= talk <=5EH
pouT ;Output talker to GPIB
H ;Incr pointer for consistency
INT1 ;Get Intl status
BOM ;Check for byte out

2?4010 ;If not, try again
A,UNL ;Stop other listeners

bpouT
INT1 ;Get Intl status
BOM ;Check for byte out

?2?20%11 ;If not, try again

34

1aC2
16C4
18C6
1eC8

19CA
l1aCccC
14CE
1aD1
14D3

14DS
1aD6
1608
19DA

1aDC
13DE
13E9

10E3
18ES
10EA
19EC
14ED
LAEF
19F2
10F3
19F5
10F8
10FA
10FB
1aFcC
19FD
1100
1182

1185
11056
1108
1198
11eD
111¢
1112
1113
1114
1115

1117
1119

1118
111D
111F

1122
1124
1126

1129
1128
112D
112F
1131
1133

1135
1136
1138
1139

3821
D350
3E86
D355

DB61
E602
CACAlQ
3E40
D354

AF

D355
3EF6
D359

DB6F
E602
C2DC19®

DB6F
E602
DB51
47
E61D
C20511
78
E601
CAEA1Q
DB6 Y

DB6F
E682
CA2211

3E89
D365
3E80
D364
3EQ3
D365

AF
D365
78
c9

416

417

418

419

420
421+4220012:
422+

423+

424

425

426

427+

428

429

43¢

431
432+220013:
433+

434+

435
4364223014
437+

439 RECV1:
449

441

442

443

444

445

445

447

448

449

450

451

452

453 ;

454 RECV2:
455 RECV3:
456

457

458

459 RECV4:
460

461

462

4/3

464 ;

465 RECV5:
466

467
468+220015:
469+

470+

471
4724220016
473+

474+

475 ;

MVI
ourT
MVI
our
WAITO
IN
ANI
Jz
MVI
our
CLRA
XRA
ouT
MVI
ouT
WAITX
IN
ANI
JINZ
WAITT
IN
ANI
IN
MOV
ANI
JINZ
MOV
ANI
JzZ
IN
STAX
INX
DCR
JINZ
MVI
JMP

ANTI
Jz

A,MLA ;For completeness

DOUT

A, AXRA+HOEND+EDEOS ;End when
AUXMD ;EO0S or EOI & Holdoff
INT1 ;Get Intl status

BOM ;Check for byte out

?2?290412 ;If not, try again
A,LON ;Listen only

ADRMD
;Immediate XEQ PON
A ;A XOR A =0
AUXMD
A,GTSB ;Goto standbhy
CMD92
;Wait for TCI=?
PRTF
TCIF
2?0913
;Wait for TCI=1
PRTF ;Get task complete int,etc.
TCIF ;Mask it
INT1 ;Get 91 Int status (END &/or BI)
B,A ;Save it in B for BI check later
ENDMK ;Check for EOS or EOI
RECV2 ;Yes end--- go wait for BI
A,B ;NO, retrieve status &
BIM ;check for BI
RECV1 ;NO, go wait for either END or BI
DIN ;YES, BI--- get data
D ;Store it in buffer
D ;Increment huffer pointer
C ;Decrement counter
RECV1 ;If count < > @ go back & wait
B, 40H ;Else set error indicator

RECV5 ;And go take control

A,B ;Retreive status

BIM ;Check for BI

RECV4 ;If BI then go input data

INT1 ;Else wait for last BI

RECV3 ;In loop

DIN ;Get data hyte

D ;Store it in buffer

D ;Incr data pointer

C ;Decrement count, but ignore it
B,? ;Set normal completion indicators

A,TCSY ;Take control synchronously
CMD92
;Wait for TCI=3 (7 tcy)

PRTF
TCIF
220915
;Wait for TCI=1
PRTF ;Get task complete int,etc.
TCIF ;Mask it

2?3016 ;Wait for task to be complete

476 ;if timeout 3 is to be checked, the ahove WAITT should
477 ;be omitted & the appropriate code to look for TCI or
478 ;TOUT3 inserted here.

479 ;
489
481
482
483
484
485
486
487+
488
489
499 RECV6:

MVI
ourT
MVI
our
MVI
our
CLRA
XRA
our
MOV
RET

A,AXRA ;Pattern to clear 91 END conditions
AUXMD ;

A, TON ;This bit pattern already in "A"
ADRMD ;Output TON

A,FNHSK ;Finish handshake

AUXMD

A ;A XOR A =0

AUXMD ;Immediate execute PON-Reset LON
A,B ;Get completion character

35

113A
1138
113D
1140
1142
1145
1147

1148
114A
114cC
114F
1151

1153
1154
1156
1159
1158

115E
1169
1162
1165
1166
1168
1169

116C
116E
1179
1173
1175
1177
1179

1178
117C
117E
117F
1181
1183

7E
FE490
FABB11
FESF
F28B11
D356
23

DB61
E682
CA4811
3E3F
D359

7B
FE20
FAGC11
FE3F
F26C11

DB61
E602
CA5E11

C35311

DB61
E692
CA6C11
3E87
D365
3E40
D364

AF
D365
78
D367
3EF6
D369

491

I’
492 ;****************'k*********‘k**********************************

493

494
495
495
497
498
499
500
581
582
503
504
585
506
537
598
599
51¢a
511
512+
513+
514+
515+
516+
517+
518+
519+
528+
521+
522
523
524
525+
526+
527+
528
529
530
531+
532+
533+
534+
535+
536+
537+
538+
539+
54¢+
541
542+
543+
544+
545
546
547
548
549
550+
551+
552+
553
554
555
556
557
558+
559
569
561
562
563

H XFER ROUTINE
’
H
; INPUTS: HL device list pointer
; B EOS character
;OUTPUTS:: None
; CALLS: None
; DESTROYS: A, HL, F
; RETURNS: A= normal, A < > @ bad talker
H
;NOTE: XFER will not work if the talker
; uses FEOI to terminate the transfer.
; Intel will be making hardware
; modifications to the 8291 that will
: correct this problem. Until that time,
H only EOS may be used without possible
: loss of the last data byte transfered.
XFER: RANGE 40H,5EH, XFERA4 ;Check for valid talker
;Checks for value in range
;branches to label if not
;in range. Falls through if
slower <= ((H) (L)) <= upper.
;Get next bhyte.
MOV A,M
CpPI 40H
JM XFER4
CpPI 5EH+1
JP XFER4
ouT DOUT ;Send it to GPIB
INX H ;Incr pointer
WNAITO
?2?20017: IN INT1 ;Get Intl status
ANTI BOM ;iCheck for byte out
Jz 220017 ;If not, try again
MVI A,UNL ;Universal unlisten
ouT pouT
XFER1: RANGE 20H, 3EH, XFER2 ;Check for valid listener
;Checks for value in range
;branches to label if not
;in range. Falls through if
;lower <= ((H) (L)) <= upner.
;Get next byte.
MOV A, M
CPI 20H
IM XFER2
CPI 3EH+1
JP XFER2
WAITO
?2?A818: IN INT1 ;Get Intl status
ANI BOM ;Check for byte out
Jz 2?2?0018 ;If not, try again
MOV A,M ;Get listener
ouT DOUT
INX H ;Incr pointer
JMP XFER1 ;Loop until non-valid listener
XFER2: WAITO
?2?20819: IN INT1 ;Get Intl status
ANI BOM ;Check for byte out
JZ ?2?200819 ;If not, try again
MVI A, AXRA+CAHCY+EDEOS ;Invisible handshake
ouT AUXMD ;Continuous AH mode
MVI A,LON ;Listen only
our ADRMD
CLRA
XRA A ;A XOR A =0
ouTr AUXMD ;Immed. XEQ PON
MOV A,B ;Get EOS
our EOQOSR ;Output it to 91
MVI A,GTSB ;Go to standby
ouT CMD92

36

1185
1187
1189

118C
118E
1190
1193
1195
1197
119A
119C

119E
11A0
11A2

11A5
11A7
11A9
11AC
11AE
11840
1182
11B4
1186

1188
11B9
11BB

118C
11BE

11Co
11C1
11C3
11Ch
11C8

11C3
11CD
11CF
11D2
11D3
11D5
11D5

1109
1108
11DD
11E9
11E2

11E4
11E6

DBAF
E602
C28511

DB6F
E602
CA8C11
DB61
E610Q
CA9311
3EFD
D369

DBAF
£692
C29E11

NDB6F
E602
CAAS11
3E80
D365
3E#3
D365
3E89
P354

AF
D365
Cc9

3E3F
D349

78
FE20
FADI11
FE3F
F2D911

DB61
E692
CACB11
78
D369
23
c3Cell

DB61
EhB2
CAD911
3EQ8
D360

DB61
EAO2

564
56542209320 :
566+

567+

568
569+220221:
570+

571+

572 XFER3:
573

574

575

576

577
578+2?20022:
579+

583+

581
5824220023
583+

584+

585

586

587

588

589

594

591

592+

593

594 XFER4:
595 ;

WAITX
IN
ANI
JNZ
WAITT
IN
ANI
Jz

IN
ANTI
Jz
MVI
ouT
WAITX
IN
ANI
JNZ
WAITT
IN
ANI
Jz
MVI
our
MVI
our
MVI
ouTr
CLRA
XRA
ourt
RET

PRTF
TCIF
220020

PRTF
TCIF
220021
INT1
ENDMK
XFER3
A, TCSY
CMD92

PRTF
TCIF
220222

PRTF
TCIF
220923
A, AXRA
AUXMD

A, FNHSK

AUXMD
A, TON
ADRMD

A
AUXMD

;Wait for TCS

;Get task complete int,etc.
;Mask it

;Wait for task to be complete
;Get END status hit

;Mask it

;Take control syncronously

;Wait for TCI

;Get task complete int,etc.
;Mask it

;Wait for task to be complete
;Not cont AH or END on EOS

;Finish handshake
;Talk only
;Normal return A=f

;A XOR A =0
;Immediate XEQ PON

5O9f shkhhhhhkhhk A XA A AR AR AR A A AR A A R A A AN A AR AR Ak Ak k kA k kh ok

597
598
599
600
601

~o Se Se Se we s

682 ;INPUTS:

TRIGGER ROUTINE

643 ;0UTPUTS:

634 ;CALLS:

505 ;DESTROYS:

AA6 ;

637

6048 TRIG:
609

619 TRIGI1:
511+

512+

A13+

614+

615+

616+

617+

618+

619+

620+

621
5224220024
A23+

624+

625

h2h

627

h28

529 TRIG2:
A30+2720025:
531+

632+

633

534

635
636+2?29R26:
637+

MVI
our
RANGE

MOV
CPI
JM
CPI
Jp
WAITO
IN
ANI
JZ
MOV
our
INX
JMP
WAITO
IN
ANT
JZ
MVI
ouT
WAITO
IN
ANI

HL listener list pointer

None
None
A, HL,

A,UNL
DOuUT

20H,3EH, TRIG2

A,M
204
TRIG?2
3EH+1
TRIG2

INT1
BOM
220924
A,M
DOUT

TRIGI1

INT1
BOM
?2?248025
A,GET
pout

INT]
BOM

F

’

;Send universal unlisten

;Check for valid listen
;Checks for value in range
;branches to label if not

;in range. Falls through if

; lower <= ((H) (L)) <= upper.
;Get next byte.

;Wait for UNL to finish
;Get Intl status

;Check for byte out

;If not, try aqain

;Get listener

;Send Listener to GPIB
;Incr. pointer

;Loop until non-valid char
;Wait for last listen to finish
;Get Intl status

;Check for byte out

;If not, try aqgain

;Send group execute trigger
;to all addressed listeners

;Get Intl status
;Check for byte out

37

11E8 CAE411
11EB C9

11EC 3E3F
11EE D360

11F9 7E
11F1 FE29
11F3 FA@0912
11F6 FE3F
11F8 F20912

11FB DB61
11FD E602
11FF CAFB11
12062 7E
1203 D360
1205 23
1206 C3Fg1l

1209 DB61
120B E682
120D CA@912
1210 3EQ04
1212 D369

1214 DB61
1216 E6@2
1218 CAl412
121B C9

121C 3E3F
121E D364

1220 DB61
1222 E662
1224 CA2012
1227 3E21
1229 D364

122B DB61
122D E682
122F CA2B12
1232 3E18
1234 D360

1236 DB61

638+

N
>
w
o ws Ne Se we wo e we

647 ;INPUTS:
648 ;OUTPUT:
649 ;CALLS:

Jz
RET

650 ;DESTROYS:

2?0026

DEVICE CLEAR ROUTINE

;If not, try again

L2222 2SR RE2 SRR AR RRRR RREEEE SRS S

HL listener pointer

None
None

A, HL, F

A,UNL
DOUT

20H, 3EH,

A,M
20H
DCLR2
3EH+1
DCLR2

INT1
BOM
220027
A,M
DOUT

H
DCLR1

INT1
BOM
220028
A,SDC
DOUT

INT1
BOM
220029

DCLR2

;Checks for value in range
;branches to label if not

;in range. Falls through if
;lower <= ((H) (L)) <= upper.
;Get next byte.

;Get Intl status
;Check for byte out
;If not, try again

;Send listener to GPIB

;Get Intl status

;Check for byte out

;If not, try again

;Send device clear

;To all addressed listeners

;Get Intl status
;Check for byte out
;If not, try again

(2RSSR R R SRR RRRRRRRRRERRRRR R RRRRRRRERRE RS R ESS

SERIAL POLL ROUTINE

651 ;

652 DCLR: MVI
653 ouT
654 DCLR1: RANGE
655+

656+

657+

658+

659+

660+ MOV
661+ CPI
662+ IM
663+ CPI
664+ Jp
665 WAITO
666+220027: 1IN
667+ ANI
668+ Jz
669 MOV
670 our
671 INX
672 JMP
673 DCLR2: WAITO
674+220028: 1IN
675+ ANI
676+ Jz
677 MVI
678 ouT
679 WAITO
680+220029: IN
681+ ANI
682+ JZ
683 RET
684 ;

685 ;

686 ;

687 ;

588 ;

689 ;INPUTS:

690 ;

691 ;0UTPUTS:

692 ;CALLS:

693 ;DESTROYS:
694 ;

695 SPOL: MVI
696 ouT
697 WAITO
698+2?200830: IN
699+ ANI
708+ Jz
701 MVI
702 ouT
703 WAITO
704+4+229031: IN
705+ ANI
796+ Jz
7087 MVI
7908 ouT
709 WAITO
710+2?208032: IN

HL talker list pointer
DE status buffer pointer
Fills buffer pointed to by DE

None

A, BC, DE, HL, F

A,UNL
DOUT

INT1
BOM
2?0030
A,MLA
DOUT

INT1
BOM
2?0031
A,SPE
DOUT

INT1

;Universal unlisten

;Get Intl status

;Check for byte out
;If not, try again
;My listen address

;Get Intl status
;Check for byte out
;If not, try again
;Serial poll enable
;To be formal about it

;Get Intl status

38

1238
123A

123D
123E
1249
1243
1245
1248
1249
124B
124C
124E

1259
1252
1254

E60A2
CA3512

DB61
E602
CA5012

AF

D365
3EF6
D369

DBGF
E602
C25E12

DB6F
£E602
CA5512

DB6H1
47
EAB1
CA6C12
3EFD
D359

DBAF
E602
C27812

DBAF
E692
CATF12
DB6#

C33D12

3E19
D360

DB61
E642
CA9812

AF
D355
C9

711+ ANI
712+ Jz
713 SPOL1: RANGE
714+

715+

716+

717+

718+

719+ MOV
720+ CPI
721+ JM
722+ CPI
723+ Jp
724 MOV
725 our
726 INX
727 MVI
728 ourT
729 WAITO
730+?2?20833: IN
731+ ANI
732+ Jz
733 CLRA
734+ XRA
735 our
736 MVI
737 our
738 WAITX
739+4220734: 1IN
740+ ANI
741+ JNZ
742 WAITT
743+2?23035: 1IN
744+ ANI
745+ JZ
746 WAITI
747+220%36: 1IN
748+ MOV
749+ ANI
752+ JZ
751 MVI
752 ouT
753 WAITX
754+42?22237: 1IN
755+ ANI
756+ INZ
757 WAITT
758+2?24338: 1IN
759+ ANI
760+ Jz
761 IN
762 STAX
763 INX
764 MVI
765 our
766 CLRA
767+ XRA
768 our
769

770 JMP
771 ;

772 SPOL2: MVI
773 ouT
774 ‘NAITO
775+228%#39: IN
776+ ANI
777+ Jz
778 CLRA
779+ XRA
789 ouT
781 RET
782 ;

783 ;

784 ;

BOM
220032
494, 5EH,

ALM
404
SPOL2
SEH+1
SPOL2
A, M
DOUT
H
A,LON
ADRMD

INT1
BOM
220033

A
AUXMD
A,GTSB
CMD92

PRTF
TCIF
220034

PRTF
TCIF
220935

INT1
B,A
BIM
2720036
A,TCSY
CMD92

PRTF
TCIF
?2?29037

PRTF
TCIF
220038
DIN

D

D

A, TON
ADRMD

A
AUXMD

SPOL1

A,SPD
DOUT

INT1
BOM
2?0939

A
AUXMD

;Check for byte out

;If not, try again

SPOL2 ;Check for valid talker
;Checks for value in range
;branches to label if not

;in range. Falls through if
;lower <= ((H) (L)) <= upper.
;Get next bhyte.

;Get talker

;Send to GPIB

;Incr talker list pointer
;Listen only

;Wait for talk address to complete
;Get Intl status

;Check for byte out

;If not, try again

;Pattern for immediate XEQ PON

;A XOR A =0

;Goto standby

;Wait for TCI false

;Wait for TCI

;Get task complete int,etc.
;Mask it

;Wait for task to be complete
;Wait for status byte input
;Get INT1 status

;Save status in B

;Check for byte in

;If not, just try again

;Take control sync

;Wait for TCI false

;Wait for TCI

;Get task complete int,etc.
;Mask it

;Wait for task to be complete
;Get serial poll status byte
;Store it in buffer

;Incr pointer

;Talk only for controller

’

;A XOR A =7

;Immeditate XEQ PON

;CLR LA

;Go on to next device on list

;Serial poll disable
;We know BO was set (WAITO above)

;Get Intl status
;Check for byte out
;If not, try again

;A XOR A =0
;Immediate XEQ PON to clear LA

LA RS RS RE SRR RS RS E R E RS R RS R R R RS EE]

39

12A3
12A5

12A7
12A8
12AA
12AD
12AF

1282
1284
1286
1289
12BA

128C
12BE
12Ca
12C3
12C5

12C7
12C9
12CB
12CE
12CF
12D1
12D3
12D4
12D5

12D8
12DA
12DC
12DF

12E0
1282

12E4
1285
127
12EA
12EC

12EF
12F1
12F3

3E3F
D369

7E
FE20
FAD812
FE3F
F2D812

DB61
E642
CAB212
7E
D359

DB61
E692
CABC12
3E@5
N340

DB61
E602
CAC712
1A
F669
D369
23

13
C3A712

DB61
E602
CADR1 2
C9

3E3F
D359

7E
FE20
FAFD12
FE3F
F2FD12

DB61
E602
CAEF12

785
7846
787
788
789
790
791
792
793
794
795
796
797+
798+
799+
803+
841+
8742+
803+
804+
805+
806+
807
848+
809+
810+
811
812
813
814+
815+
816+
817
818
819
820+
821+
822+
823
824
825
826
827
828
829
830+
831+
832+
833
834
835
836
837
838
839
840
841
842
843
844
845+
845+
847+
848+
849+
850+
851+
852+
853+
854+
855
856+
857+
858+

INPUTS::

. Se Ne we we

;OUTPUTS:

;CALLS:

; DESTROYS :

7

PPEN: MVI
ourT

PPEN1: RANGE

MOV
CPI
JIM
CPI
Jp
WAITO
?2?29040: IN
ANI
JZ
MOV
ouT
NAITO
?2?20441: IN
ANT
Jz
MVI
our
WAITO
?2?20042: 1IN
ANT
Jz
LDAX
ORI
ouT
INX
INX
JMP
PPEN2: WAITO
?2?20343: IN
ANI
JzZ
RET

PARALLEL POLL ENABLE ROUTINE

HL listener list pointer

DE confiquration byte pointer
None

None

A, DE, HL, F

A,UNL ;Universal unlisten

pour

2@H,3EH, PPEN2 ;Check for valid listener
;Checks for value in range
;branches to label if not
;in range. Falls through if
;lower <= ((H) (L)) <= upper.
;Get next byte.

A,M
20H
PPEN2
3EH+1
PPEN2
;Valid wait 91 data out reg
INT1 ;Get Intl status —
BOM ;Check for byte out
2?0040 ;If not, try again
A,M ;Get listener
DOUT
INT1 ;Get Intl status
BOM ;Check for byte out

?2?200941 ;If not, try again
A, PPC ;Parallel poll confiqgure

pDOUT

INT1 ;Get Intl status

BOM ;Check for byte out o
2?0342 ;If not, try again

D ;Get matching confiqguration byte

PPE ;Merge with parallel poll enable

pouT .

H ;Incr pointers

D

PPEN1 ;Loop until invalid listener char

INT1 ;Get Intl status
BOM ;Check for byte out
2?0943 ;If not, try again

i
; PARALLEL POLL DISABLE ROUTINE

’

; INPUTS:

;OUTPUTS:

;CALLS:

; DESTROYS:

r

PPDS: MVI
our

PPDS1: RANGE
MOV
CPI
JIM
CPI
Jp
WAITO

?2?20044: IN
ANI
JZ

HL listener list pointer
None

None

A, HL, F

A,UNL ;Universal unlisten

Doyt

23d,3EH, PPDS2 ;Check for valid listener
;Checks for value in range
;branches to label if not
;in range. Falls through if
;lower <= ((H) (L)) <= upper.
;Get next byte.

a,M

20

PPDS2

3EH+1

PPDS2

INT1 ;Get Intl status
BOM ;Check for byte out
??9444 ;If not, try again

40

12F6 7E 859 MOV A,M ;Get listener

12F7 D369 850 OouUT DoUT
12F9 23 861 INX H ;Incr pointer
12FA C3E412 852 JMP PPDS1 ;Loop until invalid listener
863 PPDS2: WAITO
12FD DB61 B854+2203345: IN INT1 ;Get Intl status
12FF E692 865+ ANI BOM ;Check for hyte out
1341 CAFD12 86hH+ Jz ??00445 ;If not, try again
1384 3E0S 867 MVI A, PPC ;Parallel poll confiqure
1305 D357 858 ouTr DOUT
859 WAITO
1398 DB61 870+220346: IN INT] ;Get Intl status
130A E602 871+ ANI BOM ;Check for byte out
136C CA9813 872+ Jz ??209246 ;If not, try again
130F 3E79 873 MVI A, PPD ;Parallel poll disable
1311 D3k0 874 our DOUT
875 WAITO
1313 DB61 8764224047 IN INT1 ;Get Intl status
1315 E692 877+ ANI BOM ;Check for byte out
1317 CA1313 878+ Jz 2?8447 ;If not, try again
131A C9 879 RET
889 ;
881 ; PARALLEL POLL UNCONFIGURE ALL ROUTINE
882 ;
883 ;
884 ; INPUTS: None
885 ;0UTPUTS: None
886 ;CALLS: None
887 ;DESTROYS: A, F
888 -;
1318 3E15 889 PPUN: MVI A,PPU ;Parallel poll unconfiqure
131D D369 8949 our DOUT
891 WAITO
131F DB61 892+2?29748: IN INT1 ;Get Intl status
1321 E692 893+ ANI BOM ;Check for byte out
1323 CAlF13 894+ Jz 2?0848 ;If not, try aqain
1326 C9 395 RET
895 ;
897 ;**
898 ;
899 ;CONDUCT A PARALLEL POLL
999 ;
941 ;
932 ;INPUTS: None
943 ;0UTPUTS: None
944 ;CALLS: None
945 ;DESTROYS: A, B, F
996 ; RETURNS: A= parallel poll status byte
9347 ;
1327 3E40 908 PPOL: MVI A,LON ;Listen only
1329 D364 949 our ADRMD
910 CLRA ;Immediate XEQ PON
1328 AF 911+ XRA A ;A XOR A =]
132C D345 912 ouT AUXMD ;Reset TON
132E 3EFS5 913 MVI A,EXPP ;Execute parallel poll
13309 D359 914 ouT CMD92
915 WAITI ;Wait for completion= BI on 91
1332 DB61 916+?223049: 1IN INT1 ;Get INT1 status
1334 47 917+ MOV B,A ;Save status in B
1335 E691 918+ ANT BIM ;Check for byte in
1337 CA3213 919+ Jz ??20849 ;If not, just try again
133A 3E8% 920 MVI A, TON ;Talk only
133C D364 921 ouT ADRMD
922 CLRA ;Immediate XEQ PON
133E AF 923+ XRA A ;A XOR A =9
133F D355 924 our AUXMD ;Reset LON
1341 DB%KO@ 925 IN DIN ;Get PP byte
1343 C9 926 RET
927 ;

928 hRkAkkkkhkkkhkhkhkhkhhhkhkhk Ak khkkhkkhkhkkhkkhk k&
929 ;PASS CONTROL ROUTINE

938 ;
931 ;INPUTS: HL pointer to talker
932 ;0UTPUTS: None

4]

1356
1358
135A
135D
135F

1361
1363
1365
1368
136A

136C
136D
136F
1371
1373
1375

1377
1379

1378
137D
137F

1382
1384
1385
1389
138A

138B
138D
138F
1392
1394

7E
FE40
FA8A13
FESF
F28A13
FE41
CA8A13
D360

DB61
EGC?2
CA5613
3EA9
D340

DB61
E602
CA6113
3E01
D364

AF

D365
3EQ1
D366
3EA1
D345

3EF1
D369

DB6F
E692
c27813

DB6F
E672
CA8213
23

c9

DB51
E68@
CACF13
DB65
FEA9

A, AXRB+CPTEN

F
40H,5EH, PCTL1

;Is it a valid talker ?
;Checks for value in range
;branches to label if not

;in range. Falls through if
;lower <= ((H) (L)) <= upper.
;Get next byte.

;Is it my talker address
;Yes, just return
;Send on GPIB

;Get Intl status
;Check for byte out
;If not, try again
;Take control messaqge

;Get Intl status

;Check for byte out

;If not, try again

;Not talk only or listen only
;Enable 91 address mode 1

;A XOR A =0

;Immediate XEQ PON

;My device address

;enabled to talk and listen
;Command pass thru enable

968 ;*******optional PP configuration goes herexxxxxxx*

;92 go idle command

;Wait for TCI

;Get task complete int,etc.
;Mask it

;Wait for task to be complete

AR K KA KKK KR A AR AR A A A AR AR Ak kA A A A AR AR AR A ARk kX

(not take control to us or CPT bit not on)
valid take control-- 92 will now be in control

THIS CODE MUST BE TIGHTLY INTEGRATED INTO ANY USER

SOFTWARE THAT FUNCTIONS WITH THE 8291 AS

A DEVICE.

NORMALLY SOME ADVANCE WARNING OF IMPENDING PASS
CONTROL SHOULD BE GIVEN TO US B8Y THE CONTROLLER
WITH OTHER USEFUL INFO. THIS PROTOCOL IS SITUATION
SPECIFIC AND WILL NOT BE COVERED HERE,

;Get INT1 req (i.e. CPT etc.)
;Is command pass thru on ?
;No, invalid-- go return

;Get command

933 ;CALLS: None
934 ;DESTROYS: A, HL,
935 PCTL: RANGE

936+

937+

938+

939+

940+

941+ MOV A,M
942+ CcpPI 404
943+ M PCTL1
944+ CPI SEH+1
945+ JP PCTL1
946 CPI MTA
947 JZ PCTL1
94 R ouT DOUT
949 WAITO
950+2?20459: IN INT1
951+ ANI BOM
952+ Jz 220059
953 MVI A,TCT
954 our DOUT
955 WAITO
956+2?203351: 1IN INT1
957+ ANT BOM
958+ Jz 224351
959 MVI A,MODE1
969 ouT ADRMD
951 CLRA

952+ XRA A

963 ouT AUXMD
954 MVI A, MDA
965 our ADRO1
964 MVI

967 ouT AUXMD
959 MVI A,GIDL
970 our CMD92
971 WAITX
972+?2?23352: 1IN PRTF
973+ ANI TCIF
974+ JINZ 2?0952
975 WAITT
976+4223M53: 1IN PRTF
977+ ANT TCIF
978+ JZ 220953
979 INX H

984 PCTL1: RET

981 ;

982 ;

983 ;

984 ;

985 ;RECEIVE CONTROL ROUTINE
986 ;

987 ; INPUTS: None
988 ;OUTPUTS: None
989 ;CALLS: None
999 ;DESTROYS: A, F
991 ;RETURNS: #= invalid
992 ; <> 0 =
993 ;NOTE:

994 ;

995 ;

996 ;

997 ;

998 ;

999 ;

1009 ;

1931 RCTL: IN INT1
1032 ANI CPT
1003 Jz RCTL2
1004 IN CPTRG
1385 CPI TCT

;Is it take control ?

42

1396 C2CA1l3 19445 INZ RCTL1 ;No, go return invalid

1399 DBh4 1007 IN ADRST ;Get address status
1398 E642 1948 ANTI TA ;Is TA on ?
139D CACA1l3 1939 JZ RCTL1 ;No —- go return invalid
13A0 3E69 1010 MVI A,DTDL]1 ;Disable talker listener
13A2 D354 1011 our ADR®@1
1344 3E84 1312 MVI A, TON ;Talk only
13A6 D354 1413 our ADRMD
1014 CLRA
13A8 AF 1215+ XRA A ;A XOR A =0
13A9 D35l 1316 out INT] ;Mask off INT bits
13AB D352 1017 our INT2
13AD D365 1418 our AUXMD
13AF 3EFA 1919 MVI A,TCNTR ;Take (receive) control 92 command
13B1 D369 1320 our CMD92
1383 3EQF 1621 MVI A,VSCMD ;Valid command pattern for 91
1385 D355 1022 ouT AJXMD
123 ;*****x**x*x optional TOUT]1 check could be put here ***xxx*x
1924 WATITX
13B7 DBAF 1925+42?23054: 1IN PRTF
1389 E6¢2 1926+ ANI TCIF
138B C€2B713 1927+ INZ 227054
1528 WAITT ;Wait for TCI
138E DBAF 1029+223455: 1IN PRTF ;Get task complete int,etc.
13C0 ERY2 1230+ ANT TCIF ;Mask it
13C2 CABE13 1931+ Jz 2?0255 ;Wait for task to be complete
13C5 3E@9 1832 MVI A,TCT ;Valid return pattern
13C7 C3CF13 1¢33 JVP RCTL?2 ;Only one return per routine
13CA 3EQF 19034 RCTL1: MVI A,VSCMD ;Acknowledge CPT
13CC D365 1835 ouT AUXMD
17236 CLRA ;Error return pattern
13CE AF 1937+ XRA A ;A XOR A =3
13CF C9 1438 RCTL2: RET
1639 ;
1@4@ ;***
1041 ;
1042 ; SRQO ROUTINE
1243 ;
1344 ; INPUTS: None
1445 ;0UTPUTS: None
1046 ;CALLS: None
1347 ;RETURNS: A= f# no SRO
1448 ; A < > @ SRQO occured
1049 ;
1058 ;
13Db3 DRBRAKI 1351 SRQD: IN INTST ;:Get 92's INTRQ status
13D2 E622 1052 ANI SROBT ;Mask off SRQ
13D4 CAE213 1353 JZ SRQD?2 ;iNot set--- go return
13D7 Fé64B 10854 ORI IACK ;S5et--- must clear it with IACK
13D9 D359 1455 our CMD92
13DB DB69 1856 SRQD1: IN INTST ;Get IBF
13DD E632 1057 ANTI IBFBT ;Mask it
13DF CADB13 1458 JZ SRQD1 ;Wait if not set
1382 C9 1859 SRQD2: RET
1052 ;
1061 ;*****************k********************‘k*****
1667 ;
19063 ;REMOTE ENABLE ROUTINE
1064 ;
1055 ; INPUTS: None
1956 ;0OUTPUTS: None
1067 ;CALLS: NONE
1368 ;DESTROYS: A, F
1059 ;
13E3 3EF8 1078 REME: MVI A, SREM
13E5 D359 1871 ouT CMDY92 ;92 asserts remote enable
1872 WAITX ;Wait for TCI = 4
13£7 DBAF 1973+228056: 1IN PRTF
13E9 E602 1874+ ANI TCIF
13EB C2E713 1275+ INZ 2?0354
1376 WAITT ;Wait for TCI
13EE DB6F 1077+2?20357: 1IN PRTF ;Get task complete int,etc.
13F0Q EAR(2 1078+ ANI TCIF ;Mask it
13F2 CAEE1l3 1079+ Jz ??20957 ;Wait for task to be complete

43

13F5 C9 1084 RET

1481 ;
1082 ;**
1983 ;
1A84 ;LOCAL ROUTINE
1985 ;
1086 ;
1087 ;INPUTS: None
1988 ;0OUTPUTS: None
1989 ;CALLS: None
1499 ;DESTROYS: A, F
1991 ;
13F6 3EF7 1392 LOCL: MVI A,SLOC
13F8 D369 1993 ouT CMD92 ;92 stops asserting remote enable
1994 WAITX ;Wait for TCI =9
13FA DB6F 1095+2?20958: 1IN PRTF
13FC E692 1096+ ANI TCIF
13FE C2FAL3 1797+ JINZ 2?0058
1498 WNAITT ;Wait for TCI
1401 DB6F 1399+4223459: IN PRTF ;Get task complete int,etc.
1403 E602 1160+ ANT TCIF ;Mask it
1495 CAQ114 1191+ Jz 2?4959 ;Wait for task to be complete
1498 C9 1102 RET
11093 ;
1104 ;**‘k**i’
1185 ;
1126 ; INTERFACE CLEAR / ABORT ROUTINE
1197 ;
1198 ;
1139 ; INPUTS: None
1114 ;0UTPUTS: None
1111 ;CALLS: None
1112 ;DESTROYS: A, F
1113 ;
1114 ;
1499 3EF9 1115 IFCL: MVI A,ABORT
14¢8 D369 1116 ouT CMD92 ;Send IFC
1117 WAITX ;Wait for TCI =9
140D DB6AF 1118+2?23350: IN PRTF
140F E502 1119+ ANI TCIF
1411 C20D14 1126+ JNZ 2?208269 .
1121 WAITT ;Wait for TCI
1414 DB6F 1122+42?20961: IN PRTF ;Get task complete int,etc.
1416 E662 1123+ ANT TCIF ;Mask it
1418 CAl1414 1124+ Jz 220761 ;Wait for task to be complete

1125 ;Delete both WAITX & WAITT if this routine
1126 ;is to be called while the 8292 is
1127 ;Controller-in-Charge. If not C.I.C. then
1128 ;TCI is set, else nothing is set (IFC is sent)
1129 ;and the WAIT'S will hang forever

1418 C9 1130 RET
1132 ;

44

0032
2931
2051
299D
203A
doFF
3740

141C
14290
1424
1428
142a
AOBF
1428
142F
goa6
1431
1432
1433
1434
1435
1434

1437
1439
1438
143E
1441

1444
1446
1448
1448
144E

1451
1454

1457
145A
145D
1468
1461
1462
1464

1467
1469
1468
146E
1471
1474

1477

3Co0
3C00
7211

46553146
52333748
48414D32
564F

aD

50463447
3754

268D
BEQF
111C14
213314
CD1C10

3554
AEB6
112314
213114
CD1C1@

CDD213
CAS5114

11493C
213514
CD1C12
18

1A
E640p
CA7714

BEIA
gE11
213514
11913C
CDYF1@
C27714

29

1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143

1144
1145

1145
1147

1148

1149

1159
1151
1152
1153
1154
1155
1156
1157
1158
1159
1169
1161
1162
1163
1164
1165
1166
1167
1168
1169
1179
1171
1172
1173
1174
1175
1174
1177
1178
1179
1189
1181
1182
1183
1184
1185
1185
1187
1188
1189
1192
1191
1192
1193
1194
1195
1196
1197

; APPLICATION EXAMPLE CODE FOR 8485

2! ; Func gen device num "2" ASCII,lstn

1t ;Freq ctr device num "1" ASCII,lstn

Q! ;Freq ctr talk address

3DH ;ASCII carriage return

AAH ;ASCII line feed

AFFH ;List end for Talk/Listen lists

40H ;Bit indicating device sent SRO
'FULFR37KHAM2VO' ,CR ;Data to set up func. gen
15 ;Buffer length

'PFRAGTT! ;Data to set up freq ctr
[;Buffer length

FCDNL, LEND ;Listen list for freq ctr
FGDNL, LEND ;Listen list for func. gen
FCDNT, LEND ;Talk list for freg ctr
GENERATOR

B, CR ; EOS

C,LIM1 ;Count

D, FGDATA ;Data pointer

H,LL2 ;Listen list pointer

SEND

B,'T! ; EOS

C,LIM2 ;Count

D, FCDATA ;Data pointer
H,LL1 ;Listen list pointer
SEND

;WAIT FOR SRQ FROM FRE(Q CTR

SRQD ;Has SRQ occurred ?

LOOP ;No, wait for it

CLEAR SROQ

D,SPBYTE ;Buffer pointer

H,TL1 ;Talk list pointer

SPOL

D ;Backup buffer pointer to ctr byte
D ;Get status hyte

SROM ;Did ctr assert SRQ ?

ERROR ;Ctr should have said yes

;RECEIVE READING FROM COUNTER

B, LF ;EOS

C,LIM3 ;Count

H,TL1 ;Talk list pointer

D, FCDATI ;Data in buffer pointer
RECV

ERROR

;¥*%*k%*% rest of user processing goes here **xxx

;User dependant error handling

1 ;Location for serial poll byte

’

FGDNL EQU

FCDNL EQU

FCDNT EQU

CR EQU

LF EQU

LEND EQU

SRQOM EQU

FGDATA: DB

LIM]l EQU

FCDATA: DB

LIM2 EQU

LL1: DB

LL2: DB

TL1: DB

H

; SETUP FUNCTION
MVI
MVI
LXT
LXI
CALL

’

:sSETUP FREQ COUNTER
MVI
MVI
LXI
LXI
CALL

14

LOOP: CALL
Jz

’

; SERIAL POLL TO

H
LXI
LXI
CALL
DCX
LDAX
ANI
Jz

;
MVI
MVI
LXI
LXI
CALL
JINZ

’

H

ERROR: NOP

; ETC.

ORG 3Cagd

SPBYTE: DS

LIM3 EQU

17 ;Max freq counter input

45

3Co1

PUBLIC SYMBOLS

EXTERNAL SYMBOLS

USER SYMBOLS

ABORT
BIM
CLRST
DCLR
EDEOS
ERROR
FCDNL
GSEC
IFCL
INTST
LL1
MODE1
PPD
PPEN2
RANGE
RECV1
RERF
SDEOI
SEND6
SPIF
SRQD1
I'CNTR
TOST
UNL
wourT

PP DPDD+ PRI

AUF9
20A1
NB68
11€eC
0004
1477
0031
gar4
1409
2069
1431
Apo1
20870
12D8
3395
10EA
POE4
9996
1088
anv4
13D8B
AAFA
ne68
AB3F
a0El

ADRO1
BOF
CMD92
DCLR1
ENDMK
EVBIT
FCONT
GTS8
INIT
LA
LL2
MTA
PPDS
PPOL
RBST
RECV2
RERM
SEND
SETF
SPOL
SRQD2
TCSY
TOUT1
VSCMD
XFER

ASSEMBLY COMPLETE,

1198 FCDATI: DS
1199 END

A QUS6A ADRMD A 9454
A ARl BOM A 23302
A 2069 CPT A AARY
A 11F0 DCLR2 A 1249
A 3019 EOQIS A 09A08
A 3310 EVCST A (0468
A 9451 FGDATA A 141C
A QAF6 HOEND A 4002
A 1009 INT1 A @90kl
A 0091 LEND A OAFF
A 1433 LocL A 13FA
A 2341 NVCMD A apa7
A 12E@ PPDS1 A 12E4
A 1327 PPU A 0415
A Q0E7 RCST A Q0E6
A 1165 RECV3 A 1104
A B9EA REVC A OQE3
A 101C SEND1 A 102E
+ 490093 SLOC A OQF7
A 121C SPOL1 A 123D
A 13E2 SROM A 2940
A 0@dFD TCT A 0909
A 7001 TOUT2 A a0nA2
A 0Q0F WAITI + 00a2
A 113A XFER1 A 1153

NO ERRORS

LIM3

ADRST
BUSST
CPTEN
DIN
EOIST
EVREG
FGDNL
HOHSX
INT2
LF
LON
OBFF
PPDS2
PPUN
RCTL
RECV4
RINM
SEND2

SPBYTE

SPOL2
STCNI
TL1

TOUT3
WAITO
XFER2

>+ PP PDDDDDD>PP

LY
AAA5R
anal
0961
2020
POs8
#3032
ana1
#0652
200A
LIy
028
12FD
1318
1388
111¢
APES
1047
3ca0
1294
BAFE
1435
aan4
anal
115C

AUXMD
CAHCY
CPTRG
DOUT
EOSR
EXPP
FNHSK
IACK
INTHM
LIM1
LOOP
PCTL
PPE
PRTI1
RCTL1
RECVS
]RSET
SEND3
SPCNI
SREM
TA
TLON
TRIG
WAITT
XFER3

P+ >

Aa55
AAR3
anss
3350
#0957
@AFS
ana3
LEEL
a9A0
BAaF
1451
1344
ansa
aa50
13CA
1117
P9F2
1859
00Fa
AOFR
0an2
aace
11BC
A0a4
1193

;Freq ctr input buffer

AXRA
CLKRT
CR
DTDL1
ERFLG
FCDATA
GET
IBFBT
INTM1
LIM2
MDA
PCTL1
PPEN
PRT92
RCTL2
RECVS
RSTI
SEND4
SPD
SROBT
TCASY
TON
TRIG1
WAITX
XFERA4

B i 2 I I B -l Qe I 3 2

aAgH
3a23
anagn
ansa
ARS8
1428
2298
Aa02
3361
aaas
2901
138A
12A3
A0A8
13CF
1139
BAF3
1070
an19
A2
0AFC
narae
11Ca
n9a3
11B8

AXRB
CLRA
DCL
DTDL?2
ERRM
FCDATI
GIDL
IBFF
INTMR
LIM3
MLA
PPC
PPEN1
PRTF
RECV
REME
RTOUT
SEND5
SPE
SROD
TCIF
TOREG
TRIG2
WEVC

DPPO>PPIPPIPPODPIID>D>P DD+ D

2aAQ
2997
Anl4
ARED
QA8
3Cal
AAF1
0910
N2r8
3711
321
AAAS
12A7
ANGRE
109F
13E3
OAEQ
187F
@A18
1300
apn2
2068
11D9
ANE2

46

APPENDIX B

TEST CASES FOR THE SOFTWARE DRIVERS

The following test cases were used to exercise the acted as a talker, listener or another controller as
software routines and to check their action. To needed to execute the tests. The sequence of out-
provide another device/controller on the GPIB a puts are shown with each test. All numbers are
ZT488 GPIB Analyzer was used. This analyzer hexadecimal.

SEND TEST CASES

B =44 44 44
C=30 2 0
DE = 3E80 3E80 3E80
HL = 3E70 3E70 3E70
3E70: 20 30 3E 3F
3E80: 11 44
GPIB output: 41 ATN 41 ATN 41 ATN
3F ATN 3F ATN 3F ATN
20 ATN 20 ATN 20 ATN
30 ATN 30 ATN 30 ATN
3E ATN 3E ATN 3E ATN
11 11
44 EOI 44 EOI
Ending B =44 44 44
Ending C = 2E 0 0
Ending DE = 3E82 3E82 3E80
Ending HL = 3E73 3E73 3E73

RECEIVE TEST CASES

B =44 44 44 44 - 44 44 44
C =30 30 30 30 4 4 0=256
DE = 3E80 3E80 3E80 3E80 3E80 3E80 3E80
HL = 3E70 3E70 3E70 3E70 3E70 3E70 3E70
3E70: 40 50 SE SF 40 40 40
GPIB output: 40 ATN 50 ATN S5E ATN 40 ATN 40 ATN 40 ATN
3F ATN 3F ATN 3F ATN 3F ATN 3F ATN 3F ATN
21 ATN 21 ATN 21 ATN 21 ATN 21 ATN 21 ATN
ZT488 Data 1 1 1 1 11 1
In 2 2 2 2 22 2
3 3 3 3 33 3
4 4 44,EOI 4 44 44
44 5,EOI
Ending A =0 0 0 SF 40 0 0
Ending B =0 0 0 44 40 0 0
Ending C =2B 2B 2C 30 0 0 FC
Ending DE = 3E85 3E85 3E84 3E80 3E84 3E84 3E84
Ending HL = 3E71 3E71 3E71 3E70 3E71 3E71 3E71

SERIAL POLL TEST CASES

C=30 C=30
DE = 3E80 DE = 3E80
HL = 3E70 HL =3E70
3E70: 40 3E70: SF
50 GPIB output: 3F ATN
S5E 21 ATN
SF 18 ATN

47

GPIB output: 3F ATN

output: 21 ATN Ending C
Ending DE = 3E80
Ending HL. = 3E70

output: 18 ATN
output: 40 ATN

input*: 00
output: 50 ATN
input*: 41
output: SE ATN
input*: 7F

output: 19 ATN

19 ATN

=30

*NOTE: leave ZT488 in single step mode even on input

Ending C =30

Ending DE = 3E83

Ending HL = 3E73
Ending 3E80: 00 41 7F

PASS CONTROL TEST CASES

HL =3E70 3E70
3E70: 40 41(MTA)
GPIB output: 40 ATN
09 ATN
— ATN
Ending HL = 3E71 3E70
Ending A =02 41(MTA)

RECEIVE CONTROL TEST CASES

GPIB input 10 ATN
ATN

Run Receive Control

GPIB Input

Ending A = 0

3E70
SF

3E70
SF

40 ATN
09 ATN

PARALLEL POLL ENABLE TEST CASES

DE = 3E80 3E80
HL = 3E70 3E70
3E70: 20 30 3E 3F 3F

3E80: 01 02 03

GPIB output: 3F ATN 3F ATN

20 ATN
05 ATN
61 ATN
30 ATN
05 ATN
62 ATN
3E ATN
05 ATN
63 ATN

Ending DE = 3E83 3E80
Ending HL = 3E73 3E70

PARALLEL POLL DISABLE TEST CASES

HL = 3E70
3E70: 20 30 3E 3F

3E70
3F

48

41 ATN
09 ATN

GPIB output: 3F ATN 3F ATN

20 ATN 05 ATN
30 ATN 70 ATN
3E ATN
05 ATN
70 ATN

Ending HL = 3E73 3E70

PARALLEL POLL UNCONFIGURE TEST CASE
GPIB output: 15 ATN

PARALLEL POLL TEST CASES

SetDIO# 1 2 3 4 5 6 7 8 None
EndingA 1 2 4 8 10 20 40 80 O

SRQ TEST

Set SRQ momentarily Reset SRQ
Ending A =02 00

TRIGGER TEST

HL =3E70
DE = 3E80
BC =4430
3E70: 20 30 3E 3F
GPIB output: 3F ATN
20 ATN
30 ATN
3E ATN
08 ATN
Ending HL = 3E73
DE = 3E80
BC =4430

DEVICE CLEAR TEST

HL = 3E70
DE = 3E80
BC = 4430
3E70: 20 30 3E 3F
GPIB output: 3F ATN
20 ATN
30 ATN
3E ATN
14 ATN
Ending HL = 3E73
DE = 3E80
RC = 4430

49

XFER TEST

B =44
HL =3E70
3E70: 40 20 30 3E 3F
GPIB output: 40 ATN
3F ATN
20 ATN
30 ATN
3E ATN
GPIB input: 0
1
2
3
44
Ending A = 0
B =44
HL = 3E74

APPLICATION EXAMPLE
GPIB OUTPUT/INPUT

GPIB output:

GPIB input:
GPIB output:

GPIB input:
GPIB output:

41 ATN
3F ATN
32 ATN
46

55

31

46

52

33

37

4B

48

41

4D

32

56

4F

0D EOI
41 ATN
3F ATN
31 ATN
50

46

34

47

37

54 EOI
SRQ
3F ATN
21 ATN
18 ATN
51 ATN
40 SRQ
19 ATN
51 ATN

50

GPIB input:

GPIB output:

3F ATN
21 ATN
20
2B
20
20
20
33
37
30
30
30
2E
30
45
2B
30
0D
0A
XX ATN

APPENDIX C

REMOTE MESSAGE CODING

Bus Signal Lane(s) and

Coding That Asserts the
C True Value of the Message
T 1D D NN
y a1 1 DRDAE ST R
p s O O AFAT ORF E
Mnemonic Message Name e s #7654 3 21 VDONI QCN
ACG addressed command group M AC Y 9 9 9 X X X X XXX1 X X XX
ATN attention U Ue X X X X XXX X XXX1 X X XX
DAB data byte (Notes 1, 9) M pp DDDDDDDDXXX® X X XX
8 7 6 54 3 21
DAC data accepted U HS X X X X X X X X XX X X X X X
DAV data valid U HS X X X X X X X X 1XX XX X X X
DCL device clear M uc Yo 91901 90 0 XXX1 X XXX
END end U ST X X X X X X X X XXX9 1 X XX
EOS end of string (Notes 2, 9) M DD EEEEEEEE XXX 0 X XXX
8 7 6 5 4 3 21
GET group execute trigger M AC Y 9 0 01 0 0 0 XXX1 X XXX
GTL go to local M AC Y Q0 0 0 0 0 01 XXX 1 X XXX
IDY identify U UC X XXX XXX X XXXX1 XXX
IFC interface clear U UC X X X X XXX XXXXX X X1X
LAG listen address group M AD Y 9 1 X X X X X XXX 1 X X X X
LLO local lock out M UC Yo 010001 XXX1 XXXX
MLA my listen address (Note 3) M AD Y 9 1 LLLLLXXX1XXXZX
54 3 21
MTA my talk address ‘Note 4) M AD Y1 ¢ TTTTT XXX1 X X X X
54 3 21
MSA my secondary address (Note 5) M SE Y1 1S SSSS XXX1XXXZX
54 3 21

51

Bus Signal Line(s) and
Coding That Asserts the

C True Value of the Message
T 1 D D NN
y a | I DRDAE ST R
p s O O AFAT ORF E
Mnemonic Message Name e s 8 76 54 3 2 1 VDCNI QCN
NUL null byte M DD 0 0 0 0 0 0 0 ¢ XXXX X X X X
OSA other secondary address M SE (OSA =SCG A MSA)
OTA other talk address M AD (OTA =TAGA MTA)
PCG primary command group M — (PCG = ACG V UCG V LAG V TAG)
PPC parallel poll configure M ACY 9 0001 0901 XXX1 XXXX
PPE parallel poll enable (Note 6) M SE Y110 SPPP XXX1XXZXZX
3 21
PPD parallel poll disable (Note 7) M SE Y111 }1) g 12)]13 XXX 1 X X X X
PPR1 parallel poll response 1 6) ST X X X XXX X1 XXX11XXX
PPR2 parallel poll response 2 U ST X X XXX X1 X xXxXxx11 XXX
PPR3 parallel poll response 3 (Note 10) U ST X XXX X1 XX XXX11XXX
PPR4 parallel poll response 4 U ST X X X X1 XXX XXX11XXX
PPR5 parallel poll response 5 8 ST X X X1 XXX X XXX11XXX
PPR6 parallel poll response 6 U ST X X1 XX XXX XXX 11 XXX
PPR7 parallel poll response 7 (Note 10) U ST X1 XXXXXX XXXx11XXX
PPR& parallel poll response 8 U ST 1 X X XX XXX XXX 1 1XXX
PPU parallel poll unconfigure M UC Y 91010901 XXX 1XXXX
REN remote enable 8] UC X XX XXX XX XXX XXXX1
RFD ready for data U HS X X X X X X X X X¢X X X X X X
RQS request service (Note 9) U ST X1 X X X X XX XXX ¢ X X XX
SCG secondary command group M SE Y1 1 XXXXX XXX 1 XXXX
SDC selected device clear M ACY Q9 90001900 XXX 1XXXX
SPD serial poll disable M UCYQOQ119001 XXX 1XXXX
SPE serial poll enable M ucC Y 9901199090 XXX1XXXX
SRQ service request U ST X X X X X X X X XXX X X1 X X
STB status byte (Notes 8, 9) M ST S XS SSSSS XXX ¢ XXXX
8 6 54 3 21
TCT take control M AC Y 0019001 XXX 1 XXXX
TAG talk address group M AD Y1 9 X X X X X XXX 1 X X X X
UCG universal command group M UC Y991 XXXX XXX 1 XXXX
UNL unlisten M AD Y 9 1 1 1 1 1 1 XXX 1 X X X X
UNT untalk (Note 11) M AD Y1 ¢ 1 1 1 1 1 XXX 1 X X X X

The 1/9 coding on ATN when sent concurrent with multiline messages has been

tive convenience.

NOTES:

(1) D1-D8 specify the device dependent data bits.

(2) E1-E8 specify the device dependent code used to
indicate the EOS message.

(3) L1-L5 specify the device dependent bits of the
device’s listen address.

(4) T1-T5 specify the device dependent bits of the
device’s talk address.

(5) S1-S5 specify the device dependent bits of the de-
vice’s secondary address.

(6) S specifies the sense of the PPR.

S Response

[} [}
1 1

P1-P3 specify the PPR message to be sent when a paral-
lel poll is executed.

added to this revision for interpre-

P3 p2 Pl PPR Message
[} (] (] PPRI1
111 PPR8

(7) D1-D4 specify don’t-care bits that shall not be
decoded by the receiving device. It is recommended
that all zeroes be sent.

(8) S1-S6, S8 specify the device dependent status.
(DIO7 is used for the RQS message.)

(9) The source of the message on the ATN line is
always the C function, whereas the messages on the
DIO and EOI lines are enabled by the T function.

(10) The source of the messages on the ATN and EOI
lines is always the C function, whereas the source of
the messages on the DIO lines is always the PP func-
tion.

(11) This code is provided for system use, see 6.3.

52

intal

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, CA 95051 e (408) 987-8080
Printed in U.S.A. T197/180/15K TL

